Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
mSystems ; 9(3): e0132223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38303112

RESUMEN

High-fat diet (HFD) is well known to impact various aspects of gut health and has been associated with many diseases and inflammation. However, the impact of HFD feeding on HIV-1 rectal transmission has not yet been well addressed. With an increasing threat of HIV-1 infection in men who have sex with men (MSM), where the rectal route is the primary mode of infection, it is imperative to understand the impact of HFD on gut microbiota and inflammation and consequently, its effect on HIV-1 rectal transmission. Here, we utilized our double humanized bone marrow, liver, thymus (dHu-BLT) mouse model to assess the impact of HFD feeding on the host's susceptibility to HIV-1 rectal transmission. We found that feeding an HFD successfully altered the gut microbial composition within 3 weeks in the dHu-BLT mouse model. In addition, levels of inflammatory mediators, specifically IL-12p70, IP-10, ICAM-1, and fecal calprotectin, were significantly higher in HFD-fed mice compared to control mice on a regular chow diet. We also observed that significantly different inflammatory markers (IL-12p70 and ICAM-1) were negatively correlated with the number of observed ASVs, Shannon diversity, and Faith's diversity in the HFD-fed group. Notably, when repeatedly challenged with a low dose of HIV-1 via a rectal route, mice receiving an HFD were significantly more susceptible to HIV-1 rectal infection than control mice. Together, these results underscore the impact of HFD feeding on the gut microbiota and inflammation and suggest the significance of diet-induced gut microbial dysbiosis and inflammation in promoting viral infection.IMPORTANCEHFD induces gut microbial dysbiosis and inflammation and has been associated with many infections and disease progression; however, its impact on HIV-1 rectal transmission is largely unknown. Given the increasing threat of HIV-1 incidence in men who have sex with men (MSM), it has become crucial to comprehend the impact of factors associated with gut health, like HFD consumption, on host susceptibility to HIV-1 rectal transmission. This is particularly important since anal intercourse remains the primary mode of HIV transmission within the MSM group. In this study, utilizing our unique mouse model, featuring both the human immune system and gut microbiota, we showed that HFD feeding led to gut microbial dysbiosis, induced inflammation, and increased HIV-1 rectal transmission. Collectively, our study highlights the significant impact of HFD on gut microbiota and inflammation and suggests an HFD consumption as a potential risk factor for promoting HIV-1 rectal susceptibility.


Asunto(s)
Seropositividad para VIH , VIH-1 , Minorías Sexuales y de Género , Masculino , Humanos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Homosexualidad Masculina , Molécula 1 de Adhesión Intercelular , Disbiosis/etiología , Inflamación/complicaciones , Seropositividad para VIH/complicaciones
2.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244231

RESUMEN

The ecological relationships among antimicrobial producing, resistant, and sensitive strains have been proposed to follow rock-paper-scissors dynamics, but evidence is mainly based on Gram-negative bacteriocins in vitro. The ecological relevance of antimicrobials in vivo or in situ has not been systematically studied. This study therefore aimed to analyze binary and ternary competitions among reutericyclin-producing strain Limosilactobacillus reuteri TMW1.656, its reutericyclin-resistant, nonproducing isogenic derivative L. reuteri TMW1.656∆rtcN, and the reutericyclin-sensitive, nonproducing L. reuteri TMW1.656∆rtcN∆rtcT in vitro (liquid culture and static plate), in situ (sourdough fermentation), and in vivo (gut of germ-free mice). In liquid culture, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Limosilactobacillus reuteri TMW1.656∆rtcN∆rtcT had a higher fitness than TMW1.656∆rtcN. On agar plates, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN∆rtcT. In situ, reutericyclin production and resistance had no influence on the fitness of the strains. In vivo, TMW1.656 had an advantage over TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Ternary competitions showed reutericyclin production was ecologically beneficial in all ecosystems. The findings support the ecological importance of reutericyclin in a variety of environments/niches, providing an explanation for the acquisition of the reutericyclin gene cluster in L. reuteri and its contribution to the ecological fitness of Streptococcus mutans.


Asunto(s)
Limosilactobacillus reuteri , Ratones , Animales , Ecosistema , Ácido Tenuazónico
3.
Gut Microbes ; 15(2): 2282789, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010872

RESUMEN

Dysregulation of both the gut barrier and microbiota (dysbiosis) promotes susceptibility to and severity of Inflammatory Bowel Diseases (IBD). Leaky gut and dysbiosis often coexist; however, potential interdependence and molecular regulation are not well understood. Robust expression of claudin-3 (CLDN3) characterizes the gut epithelium, and studies have demonstrated a positive association between CLDN3 expression and gut barrier maturity and integrity, including in response to probiotics. However, the exact status and causal role of CLDN3 in IBD and regulation of gut dysbiosis remain unknown. Analysis of mouse and human IBD cohorts helped examine CLDN3 expression in IBD. The causal role was determined by modeling CLDN3 loss of expression during experimental colitis. 16S sequencing and in silico analysis helped examine gut microbiota diversity between Cldn3KO and WT mice and potential host metabolic responses. Fecal microbiota transplant (FMT) studies were performed to assess the role of gut dysbiosis in the increased susceptibility of Cldn3KO mice to colitis. A significant decrease in CLDN3 expression characterized IBD and CLDN3 loss of expression promoted colitis. 16S sequencing analysis suggested gut microbiota changes in Cldn3KO mice that were capable of modulating fatty acid metabolism and oxidative stress response. FMT from naïve Cldn3KO mice promoted colitis susceptibility in recipient germ-free mice (GFM) compared with GFM-receiving microbiota from WT mice. Our data demonstrate a critical role of CLDN3 in maintaining normal gut microbiota and inflammatory responses, which can be harnessed to develop novel therapeutic opportunities for patients with IBD.


Asunto(s)
Claudina-3 , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Claudina-3/genética , Colitis/genética , Colitis/complicaciones , Disbiosis/complicaciones , Trasplante de Microbiota Fecal , Enfermedades Inflamatorias del Intestino/complicaciones , Animales , Ratones
4.
Cells ; 12(18)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37759490

RESUMEN

Preclinical studies have shown that chronic alcohol abuse leads to alterations in the gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and immunological effects. However, such studies have been limited in their ability to evaluate the direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to produce human alcohol-associated microbiota or human control-microbiota F1 progenies. F1 offspring colonized with fecal microbiota from individuals with high AUDIT scores had increased susceptibility to Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia, as determined by increased mortality rates, pulmonary bacterial burden, and post-infection lung damage. These findings highlight the importance of considering both the direct effects of alcohol and alcohol-induced dysbiosis when investigating the mechanisms behind alcohol-related disorders and treatment strategies.


Asunto(s)
Alcoholismo , Microbiota , Neumonía Bacteriana , Humanos , Animales , Ratones , Alcoholismo/complicaciones , Disbiosis/complicaciones , Etanol
5.
J Nanobiotechnology ; 21(1): 352, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770932

RESUMEN

BACKGROUND: Macrophages are highly plastic innate immune cells that play key roles in host defense, tissue repair, and homeostasis maintenance. In response to divergent stimuli, macrophages rapidly alter their functions and manifest a wide polarization spectrum with two extremes: M1 or classical activation and M2 or alternative activation. Extracellular vesicles (EVs) secreted from differentially activated macrophages have been shown to have diverse functions, which are primarily attributed to their microRNA cargos. The role of protein cargos in these EVs remains largely unexplored. Therefore, in this study, we focused on the protein cargos in macrophage-derived EVs. RESULTS: Naïve murine bone marrow-derived macrophages were treated with lipopolysaccharide or interlukin-4 to induce M1 or M2 macrophages, respectively. The proteins of EVs and their parental macrophages were subjected to quantitative proteomics analyses, followed by bioinformatic analyses. The enriched proteins of M1-EVs were involved in proinflammatory pathways and those of M2-EVs were associated with immunomodulation and tissue remodeling. The signature proteins of EVs shared a limited subset of the proteins of their respective progenitor macrophages, but they covered many of the typical pathways and functions of their parental cells, suggesting their respective M1-like and M2-like phenotypes and functions. Experimental examination validated that protein cargos in M1- or M2-EVs induced M1 or M2 polarization, respectively. More importantly, proteins in M1-EVs promoted viability, proliferation, and activation of T lymphocytes, whereas proteins in M2-EVs potently protected the tight junction structure and barrier integrity of epithelial cells from disruption. Intravenous administration of M2-EVs in colitis mice led to their accumulation in the colon, alleviation of colonic inflammation, promotion of M2 macrophage polarization, and improvement of gut barrier functions. Protein cargos in M2-EVs played a key role in their protective function in colitis. CONCLUSION: This study has yielded a comprehensive unbiased dataset of protein cargos in macrophage-derived EVs, provided a systemic view of their potential functions, and highlighted the important engagement of protein cargos in the pathophysiological functions of these EVs.


Asunto(s)
Colitis , Vesículas Extracelulares , Animales , Ratones , Macrófagos/metabolismo , Fagocitosis , Vesículas Extracelulares/metabolismo , Colitis/metabolismo , Inflamación/metabolismo
6.
Eur J Immunol ; 53(11): e2250236, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37673213

RESUMEN

Multiple sclerosis (MS) is a chronic and progressive autoimmune disease of the central nervous system (CNS), with both genetic and environmental factors contributing to the pathobiology of the disease. Although HLA genes have emerged as the strongest genetic factor linked to MS, consensus on the environmental risk factors is lacking. Recently, the gut microbiota has garnered increasing attention as a potential environmental factor in MS, as mounting evidence suggests that individuals with MS exhibit microbial dysbiosis (changes in the gut microbiome). Thus, there has been a strong emphasis on understanding the role of the gut microbiome in the pathobiology of MS, specifically, factors regulating the gut microbiota and the mechanism(s) through which gut microbes may contribute to MS. Among all factors, diet has emerged to have the strongest influence on the composition and function of gut microbiota. As MS patients lack gut bacteria capable of metabolizing dietary phytoestrogen, we will specifically discuss the role of a phytoestrogen diet and phytoestrogen metabolizing gut bacteria in the pathobiology of MS. A better understanding of these mechanisms will help to harness the enormous potential of the gut microbiota as potential therapeutics to treat MS and other autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Microbiota , Esclerosis Múltiple , Humanos , Fitoestrógenos , Bacterias , Dieta , Disbiosis
7.
Gut Microbes ; 15(1): 2178799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37610979

RESUMEN

Waxy starches from cereal grains contain >90% amylopectin due to naturally occurring mutations that block amylose biosynthesis. Waxy starches have unique organoleptic characteristics (e.g. sticky rice) as well as desirable physicochemical properties for food processing. Using isogenic pairs of wild type sorghum lines and their waxy derivatives, we studied the effects of waxy starches in the whole grain context on the human gut microbiome. In vitro fermentations with human stool microbiomes show that beneficial taxonomic and metabolic signatures driven by grain from wild type parental lines are lost in fermentations of grain from the waxy derivatives and the beneficial signatures can be restored by addition of resistant starch. These undesirable effects are conserved in fermentations of waxy maize, wheat, rice and millet. We also demonstrate that humanized gnotobiotic mice fed low fiber diets supplemented with 20% grain from isogenic pairs of waxy vs. wild type parental sorghum have significant differences in microbiome composition and show increased weight gain. We conclude that the benefits of waxy starches on food functionality can have unintended tradeoff effects on the gut microbiome and host physiology that could be particularly relevant in human populations consuming large amounts of waxy grains.


Asunto(s)
Microbioma Gastrointestinal , Sorghum , Humanos , Animales , Ratones , Almidón/química , Grano Comestible/genética , Grano Comestible/metabolismo , Sorghum/química , Sorghum/genética , Sorghum/metabolismo , Amilopectina , Mutación
8.
Pathogens ; 12(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37242309

RESUMEN

Intestinal dysbiosis increases susceptibility to infection through the alteration of metabolic profiles, which increases morbidity. Zinc (Zn) homeostasis in mammals is tightly regulated by 24 Zn transporters. ZIP8 is unique in that it is required by myeloid cells to maintain proper host defense against bacterial pneumonia. In addition, a frequently occurring ZIP8 defective variant (SLC39A8 rs13107325) is strongly associated with inflammation-based disorders and bacterial infection. In this study, we developed a novel model to study the effects of ZIP8-mediated intestinal dysbiosis on pulmonary host defense independent of the genetic effects. Cecal microbial communities from a myeloid-specific Zip8 knockout mouse model were transplanted into germ-free mice. Conventionalized ZIP8KO-microbiota mice were then bred to produce F1 and F2 generations of ZIP8KO-microbiota mice. F1 ZIP8KO-microbiota mice were also infected with S. pneumoniae, and pulmonary host defense was assessed. Strikingly, the instillation of pneumococcus into the lung of F1 ZIP8KO-microbiota mice resulted in a significant increase in weight loss, inflammation, and mortality when compared to F1 wild-type (WT)-microbiota recipients. Similar defects in pulmonary host defense were observed in both genders, although consistently greater in females. From these results, we conclude that myeloid Zn homeostasis is not only critical for myeloid function but also plays a significant role in the maintenance and control of gut microbiota composition. Further, these data demonstrate that the intestinal microbiota, independent of host genetics, play a critical role in governing host defense in the lung against infection. Finally, these data strongly support future microbiome-based interventional studies, given the high incidence of zinc deficiency and the rs13107325 allele in humans.

9.
Sci Adv ; 9(19): eadf5499, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37184968

RESUMEN

Mammalian species harbor compositionally distinct gut microbial communities, but the mechanisms that maintain specificity of symbionts to host species remain unclear. Here, we show that natural selection within house mice (Mus musculus domesticus) drives deterministic assembly of the house-mouse gut microbiota from mixtures of native and non-native microbiotas. Competing microbiotas from wild-derived lines of house mice and other mouse species (Mus and Peromyscus spp.) within germ-free wild-type (WT) and Rag1-knockout (Rag1-/-) house mice revealed widespread fitness advantages for native gut bacteria. Native bacterial lineages significantly outcompeted non-native lineages in both WT and Rag1-/- mice, indicating home-site advantage for native microbiota independent of host adaptive immunity. However, a minority of native Bacteriodetes and Firmicutes favored by selection in WT hosts were not favored or disfavored in Rag1-/- hosts, indicating that Rag1 mediates fitness advantages of these strains. This study demonstrates home-site advantage for native gut bacteria, consistent with local adaptation of gut microbiota to their mammalian species.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Bacterias , Proteínas de Homeodominio/genética , Mamíferos
10.
mSphere ; 8(2): e0047822, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36883813

RESUMEN

Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.


Asunto(s)
Colitis , Infecciones por Escherichia coli , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Inflamación/patología
11.
J Periodontol ; 94(7): 848-857, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36799307

RESUMEN

BACKGROUND: The purpose of this 6-week, single-blinded, randomized clinical trial was to determine if the use of an interproximal brush, with or without a tracking device, is more effective than an oral irrigator in improving interproximal probing depth (PD), clinical attachment level (CAL), plaque index (PI), gingival index (GI), bleeding on probing (BOP), and inflammatory markers. METHODS: Seventy-six patients with Stages III-IV, Grade B periodontitis and a 5-7 mm posterior interproximal PD with BOP were randomized: (1) interproximal brush alone (IB; n = 26), (2) interproximal brush with tracking device (TD; n = 23), (3) oral irrigator (OI; n = 27). Participants used devices once daily for 6 weeks. Clinical measurements (PD, CAL, PI, BOP, GI) and gingival crevicular fluid (GCF) samples were collected at baseline and 6 weeks. RESULTS: All groups showed a significant reduction in PD and CAL (≥1.1 mm, p < 0.0001) and improvement in BOP (≥56%, p < 0.0001) and GI (≥82%, p < 0.001) at the experimental site with no differences among groups. The IB and IB+TD groups showed a significant reduction in PI (≥0.9, p ≤ 0.01). Interleukin (IL)-1ß was reduced in all groups (p = 0.006), but IB+TB more than OI (p ≤ 0.05). IL-10 was reduced among all groups (p = 0.01), while interferon-gamma significantly increased (p = 0.01) in all groups. CONCLUSIONS: IB and OI improved clinical parameters of PD and CAL and reduced inflammatory markers (BOP, GI, GCF IL-1ß). IB had better interproximal plaque reduction. Tracking did not significantly improve clinical parameters compared with the IB and OI groups, suggesting future modifications are needed.


Asunto(s)
Placa Dental , Periodontitis , Humanos , Higiene Bucal , Líquido del Surco Gingival , Índice de Placa Dental
12.
Tissue Barriers ; 11(2): 2077069, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-35603609

RESUMEN

The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.


Asunto(s)
Microbiota , Probióticos , Humanos , Prebióticos , Dieta , Probióticos/uso terapéutico , Permeabilidad
13.
J Periodontol ; 94(4): 467-476, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36017934

RESUMEN

BACKGROUND: The objective of this exploratory study was to evaluate inflammatory markers in periodontal maintenance patients from a randomized, double-masked, parallel intervention clinical trial comparing local simvastatin (SIM) to carrier alone following mini-flap access. METHODS: Fifty patients with a 6-9-mm inflamed pocket during periodontal maintenance therapy (PMT) were treated with papilla reflection (PR)/root planing and placement of 2.2-mg simvastatin in methylcellulose (SIM/MCL) or methylcellulose alone (MCL). A small piece of interproximal soft tissue was harvested at baseline and 2 weeks postoperatively, gingival crevicular fluid (GCF) obtained at baseline, 2 weeks and 12 months, and bleeding on probing (BOP) and clinical attachment level (CAL) were measured at baseline and 12 months. Pro-inflammatory interleukin (IL)-6 and anti-inflammatory IL-10 gene activation were determined by reverse transcriptase polymerase chain reaction (rt-PCR). GCF IL-1ß, IL-6, IL-10, and vascular endothelial growth factor (VEGF-A) were measured with multiplex technology. Comparisons between groups and over time used logistic regression and general estimating equations. Associations between inflammatory markers and 12-month outcomes used Wilcoxon rank sum tests or Pearson correlations. RESULTS: Patients in the SIM group had 4.17 greater odds (p = 0.047) of improved BOP at 12 months. Median IL-6 and VEGF were significantly increased for all patients after 2 weeks of healing (p < 0.0001 and p = 0.03, respectively), while median IL-10 gene activation was increased after 2 weeks in SIM/MCL (NS). Overall, elevated GCF IL-10 at 2 weeks was significantly correlated with improved CAL at 12 months (r = -0.32, p = 0.03). CONCLUSIONS: Local SIM/MCL may have anti-inflammatory effects that potentially are associated with improved long-term CAL outcomes.


Asunto(s)
Interleucina-10 , Simvastatina , Humanos , Raspado Dental/métodos , Interleucina-6 , Factor A de Crecimiento Endotelial Vascular , Estudios de Seguimiento , Inflamación , Cicatrización de Heridas , Líquido del Surco Gingival
14.
Gut Microbes ; 14(1): 2126275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36130094

RESUMEN

Little is known about how interactions among grain processing, grain type, and carbohydrate utilization (CU) by the microbiome influence the health benefits of whole grains. Therefore, two whole grains - brown rice and whole wheat - and two processing methods - boiling (porridge) and extrusion - were studied for their effects on host metabolic outcomes in mice harboring human microbiomes previously shown in vitro to have high or low CU. Mice carrying either microbiome experienced increases in body weight and glycemia when consuming Western diets supplemented with extruded grains versus porridge. However, mice with the high but not low CU microbiome also gained more weight and fat over time and were less glucose tolerant when consuming extruded grain diets. In high CU microbiome mice, the exacerbated negative health outcomes associated with extrusion were related to altered abundances of Lachnospiraceae and Ruminococcaceae as well as elevated sugar degradation and colonic acetate production. The amplicon sequence variants (ASVs) associated with extruded and porridge diets in this in vivo study were not the same as those identified in our prior in vitro study; however, the predicted functions were highly correlated. In conclusion, mice harboring both high and low CU microbiomes responded to the whole grain diets similarly, except the high CU microbiome mice exhibited exacerbated effects due to excessive acetate production, indicating that CU by the microbiome is linked to host metabolic health outcomes. Our work demonstrates that a greater understanding of food processing effects on the microbiome is necessary for developing foods that promote rather than diminish host health.Abbreviations: CU- carbohydrate utilization; SCFA- short-chain fatty acids; GF- germ-free; HMA, human-microbiome associated; ipGTT- intraperitoneal glucose tolerance test; HOMA-IR- Homeostatic Model Assessment for Insulin Resistance; AUC- area under the glycemia curve; ASV- amplicon sequence variant; lf- low-fat; wd- Western diet; wd_wwp- Western diet containing whole wheat porridge; wd_wwe- Western diet containing whole wheat extrudate; wd_bre- Western diet containing brown rice extrudate; wd_extr- Western diet containing either whole wheat or brown rice extrudate.


Asunto(s)
Microbioma Gastrointestinal , Granos Enteros , Animales , Glucemia , Dieta , Grano Comestible/metabolismo , Ácidos Grasos Volátiles , Humanos , Ratones , Triticum/metabolismo
16.
ISME J ; 16(6): 1594-1604, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35210551

RESUMEN

It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their composition. Through experiments in gnotobiotic mice with complex microbiomes, we demonstrated that strains of Akkermansia muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of these species. Strains of A. muciniphila showed strict competitive exclusion, while B. vulgatus strains coexisted but populations were still influenced by competitive interactions. These differences in competitive behavior were reflective of genomic variation within the two species, indicating considerable niche overlap for A. muciniphila strains and a broader niche space for B. vulgatus strains. Priority effects were detected for both species as strains' competitive fitness increased when colonizing first, which resulted in stable persistence of the A. muciniphila strain colonizing first and competitive exclusion of the strain arriving second. Based on these observations, we devised a subtractive strategy for A. muciniphila using antibiotics and showed that a strain from an assembled community can be stably replaced by another strain. By demonstrating that competitive outcomes in gut ecosystems depend on niche differences and are historically contingent, our study provides novel information to explain the ecological characteristics of gut microbiomes and a basis for their modulation.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ecosistema , Microbioma Gastrointestinal/genética , Vida Libre de Gérmenes , Ratones , Verrucomicrobia/genética
17.
Biomedicines ; 9(2)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33671880

RESUMEN

Urolithin A (UroA) is a gut metabolite produced from ellagic acid-containing foods such as pomegranates, berries, and walnuts. UroA is of growing interest due to its therapeutic potential for various metabolic diseases based on immunomodulatory properties. Recent advances in UroA research suggest that UroA administration attenuates inflammation in various tissues, including the brain, adipose, heart, and liver tissues, leading to the potential delay or prevention of the onset of Alzheimer's disease, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. In this review, we focus on recent updates of the anti-inflammatory function of UroA and summarize the potential mechanisms by which UroA may help attenuate the onset of diseases in a tissue-specific manner. Therefore, this review aims to shed new insights into UroA as a potent anti-inflammatory molecule to prevent immunometabolic diseases, either by dietary intervention with ellagic acid-rich food or by UroA administration as a new pharmaceutical drug.

18.
ISME Commun ; 1(1): 31, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37938227

RESUMEN

16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach, delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e., variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective richness to facilitate the comparison of alpha-diversity across studies.

19.
Gut Microbes ; 13(1): 1-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33382950

RESUMEN

Extibacter muris is a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid (DCA) via 7α-dehydroxylation. Although bile acids influence metabolic and inflammatory responses, few in vivo models exist for studying their metabolism and impact on the host. Mice were colonized from birth with the simplified community Oligo-MM12 with or without E. muris. As the metabolism of bile acids is known to affect lipid homeostasis, mice were fed either a low- or high-fat diet for eight weeks before sampling and analyses targeting the gut and liver. Multiple Oligo-MM12 strains were capable of deconjugating primary bile acids in vitro. E. muris produced DCA from CA either as pure compound or in mouse bile. This production was inducible by CA in vitro. Ursodeoxycholic, chenodeoxycholic, and ß-muricholic acid were not metabolized under the conditions tested. All gnotobiotic mice were stably colonized with E. muris, which showed higher relative abundances after HF diet feeding. The presence of E. muris had minor, diet-dependent effects on Oligo-MM12 communities. The secondary bile acids DCA and surprisingly LCA and their taurine conjugates were detected exclusively in E. muris-colonized mice. E. muris colonization did not influence body weight, white adipose tissue mass, liver histopathology, hepatic aspartate aminotransferase, or blood levels of cholesterol, insulin, and paralytic peptide (PP). However, proteomics revealed shifts in hepatic pathways involved in amino acid, glucose, lipid, energy, and drug metabolism in E. muris-colonized mice. Liver fatty acid composition was substantially altered by dietary fat but not by E. muris.In summary, E. muris stably colonized the gut of mice harboring a simplified community and produced secondary bile acids, which affected proteomes in the liver. This new gnotobiotic mouse model can now be used to study the pathophysiological role of secondary bile acids in vivo.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Clostridiales/metabolismo , Microbioma Gastrointestinal/fisiología , Hígado/fisiología , Animales , Biotransformación , Clostridiales/crecimiento & desarrollo , Dieta Alta en Grasa , Vida Libre de Gérmenes , Intestinos/microbiología , Hígado/metabolismo , Ratones
20.
Artículo en Inglés | MEDLINE | ID: mdl-33374120

RESUMEN

Whole red raspberry polyphenols (RRW), including ellagic acid, and their gut-derived metabolite, urolithin A (UroA), attenuate inflammation and confer health benefits. Although results from recent studies indicate that polyphenols and UroA also provide neuroprotective effects, these compounds differ in their bioavailability and may, therefore, have unique effects on limiting neuroinflammation. Accordingly, we aimed to compare the neuroprotective effects of RRW and UroA on BV-2 microglia under both 3 h and 12 and 24 h inflammatory conditions. In inflammation induced by lipopolysaccharide (LPS) and ATP stimulation after 3 h, RRW and UroA suppressed pro-inflammatory cytokine gene expression and regulated the JNK/c-Jun signaling pathway. UroA also reduced inducible nitric oxide synthase gene expression and promoted M2 microglial polarization. During inflammatory conditions induced by either 12 or 24 h stimulation with LPS, UroA-but not RRW-dampened pro-inflammatory cytokine gene expression and suppressed JNK/c-Jun signaling. Taken together, these results demonstrate that RRW and its gut-derived metabolite UroA differentially regulate neuroprotective responses in microglia during 3 h versus 12 and 24 h inflammatory conditions.


Asunto(s)
Cumarinas/farmacología , Microbioma Gastrointestinal , Microglía/efectos de los fármacos , Polifenoles/farmacología , Rubus/química , Células Cultivadas , Citocinas/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...