Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1862(9): 1913-1924, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29886278

RESUMEN

BACKGROUND: Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-ß-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-ß-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. METHODS: The quercetin-2HP-ß-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry), UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H2O2-induced DNA damage. RESULTS: Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and retained its oxidation profile. Although the protective ability of the quercetin-2HP-ß-CD complex against H2O2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. CONCLUSIONS: We found that in a quercetin-2HP-ß-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. GENERAL SIGNIFICANCE: The oxidation profile of a natural product once it is encapsulated in a supramolecular carrier was unveiled as also it was discovered that decomplexation can be triggered by a chemical stimilus.


Asunto(s)
Ciclodextrinas/metabolismo , Daño del ADN/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo , Quercetina/metabolismo , Disponibilidad Biológica , Ciclodextrinas/química , Humanos , Hierro/química , Células Jurkat , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Quercetina/química
2.
Dalton Trans ; 46(4): 1052-1064, 2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28050611

RESUMEN

Three new dipolar cations have been synthesised, containing ferrocenyl (Fc) electron donor groups attached to helquat (Hq) acceptors. These organometallic Hq derivatives have been characterised as their TfO- salts by using various techniques including NMR and electronic absorption spectroscopies and electrochemical measurements. UV-vis spectra show multiple intense low energy absorptions attributable to intramolecular charge-transfer (ICT) excitations. Each compound displays a reversible Fc+/0 redox process, together with two reversible one-electron reductions of the Hq fragment. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering at 1064 nm, and Stark (electroabsorption) spectroscopic studies on the visible absorption bands. The obtained first hyperpolarizabilities ß are moderate, consistent with the relatively short π-conjugation lengths between the Fc and attached pyridinium group. A single-crystal X-ray structure has been solved for one of the complexes as its PF6- salt, revealing a centrosymmetric packing in the triclinic space group P1[combining macron]. Density functional theory (DFT) and time-dependent DFT calculations indicate that the lowest energy absorption bands have mainly metal-to-ligand charge-transfer character. The donor orbitals involved in the electronic transitions forming the next lowest energy ICT band also have substantial contributions from the Fe atom. Good agreement between the simulated and experimental UV-vis absorption spectra is achieved by using the PBE0 functional with the 6-311++G(d)/LANL2DZ mixed basis set, and the theoretical ß values are reasonably large. Oxidation of the Fc unit is predicted to cause the ßtot value to decrease by more than 80% in one of the complexes.

3.
J Phys Chem B ; 119(20): 6074-80, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25915694

RESUMEN

The oxidation mechanism of selected hydroxyquinoline carboxylic acids such as 8-hydroxyquinoline-7-carboxylic acid (1), the two positional isomers 2-methyl-8-hydroxyquinoline-7-carboxylic acid (3) and 2-methyl-5-hydroxyquinoline-6-carboxylic acid (4), as well as other hydroxyquinolines were studied in aprotic environment using cyclic voltammetry, controlled potential electrolysis, in situ UV-vis and IR spectroelectrochemistry, and HPLC-MS/MS techniques. IR spectroelectrochemistry showed that oxidation unexpectedly proceeds together with protonation of the starting compound. We proved that the nitrogen atom in the heterocycle of hydroxyquinolines is protonated during the apparent 0.7 electron oxidation process. This was rationalized by the autodeprotonation reaction by another two starting molecules of hydroxyquinoline, so that the overall oxidation mechanism involves two electrons and three starting molecules. Both the electrochemical and spectroelectrochemical results showed that the oxidation mechanism is not influenced by the presence of the carboxylic group in the chemical structure of hydroxyquinolines, as results from oxidation of 2,7-dimethyl-5-hydroxyquinoline (6). In the presence of a strong proton acceptor such as pyridine, the oxidation ECEC process involves two electrons and two protons per one molecule of the hydroxyquinoline derivative. The electron transfer efficiency of hydroxyquinolines in biosystems may be related to protonation of biocompounds containing nitrogen bases. Molecular orbital calculations support the experimental findings.


Asunto(s)
Ácidos Carboxílicos/química , Hidroxiquinolinas/química , Cromatografía Líquida de Alta Presión , Técnicas Electroquímicas , Electroquímica , Electrones , Modelos Moleculares , Oxidación-Reducción , Protones , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Espectrometría de Masas en Tándem
4.
Chem Commun (Camb) ; 48(28): 3433-5, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22358256

RESUMEN

This study explains the controversies in the literature concerning the number of electrons involved in the oxidation of quercetin. This stems from inappropriate handling samples, which require strict anaerobic conditions. The redox potential of quercetin strongly depends on the pH and on the presence of dissociation forms in solution.


Asunto(s)
Electrones , Oxígeno/química , Quercetina/química , Técnicas Electroquímicas , Concentración de Iones de Hidrógeno , Oxidación-Reducción
5.
Anal Bioanal Chem ; 402(2): 975-82, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22057718

RESUMEN

The natural flavonoid compounds quercetin (3,3',4',5,7-pentahydroxyflavone) and luteolin (3',4',5,7-tetrahydroxyflavone) are important bioactive compounds with antioxidative, anti-allergic, and anti-inflammatory properties. However, both are unstable when exposed to atmospheric oxygen, which causes degradation and complicates their analytical determinations. The oxidative change of these flavonoids was observed and followed by UV-visible spectrophotometry, both in aqueous and ethanolic solutions. The distribution of the degradation products in aqueous media was monitored by LC-MS and LC-DAD analysis. The amounts of oxidative reaction products increase with the exposure time. The oxidative degradation reduces the pharmacological efficiency of these antioxidants and renders analytical determination inaccurate. The oxidative changes in flavonoid test solutions can explain the inconsistent dissociation constants reported in the literature. Dissociation constants of quercetin and luteolin were determined both by alkalimetric titration and by UV-visible spectrophotometry under deaerated conditions. The values pK(1) = 5.87 ± 0.14 and pK(2) = 8.48 ± 0.09 for quercetin, and pK(1) = 5.99 ± 0.32 and pK(2) = 8.40 ± 0.42 for luteolin were found.


Asunto(s)
Luteolina/análisis , Oxígeno , Quercetina/análisis , Antioxidantes/análisis , Antioxidantes/química , Luteolina/química , Estructura Molecular , Oxidación-Reducción , Quercetina/química , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...