Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28969, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38617967

RESUMEN

Plant-based hard capsules have gained considerable attention because of their great properties. Accordingly, designing and developing of these kinds of capsules will be a difficult task. Herein, an innovative pullulan-based hard capsule formulation was prepared for the first time. A series of characterization approaches, including Fourier transform infrared, field emission scanning electron microscope, and rheology analysis, were utilized to figure out the straightforward preparation of a designed hard capsule. Many tests and experiments were performed to achieve the optimum capsule formulation. Based on the obtained results, specifications such as uniform downfall and non-desirable adhesion, and other ideal characteristics of the capsule display the critical function. The gelling promoter of divalent cationic salts is more beneficial than its single-valent counterparts. With respect to the key role of gelling promoter, the presence of chosen MgSO4.7H2O salt and the source of selected carrageenan are important parameters to achieve optimal formulation. Moreover, field emission scanning electron microscope images illustrate that the weight ratio of 3.5 (gelling agent to salt) displays uniform surface morphology without any impurities or other foreign materials. Likewise, the outcomes of the rheology test also illustrated that the weight ratio of 3.5 is preferable. Considering the different weight ratios, the benefits of a weight ratio of 3.5 outweigh the other investigated ratios. Overall, the current research addresses substantial information about developing pullulan-based hard capsules for target usage.

2.
Carbohydr Polym ; 226: 115284, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31582083

RESUMEN

Cellulose based microcarriers can be used in biomedical science as supports for cell adhesion and proliferation. However, to facilitate cell attachment to their surface, they require appropriate functional surface charge. Cell function such as adhesion and growth is increased on the modified surfaces with cationic and anionic groups. In this research, diethylaminoethyl cellulose was carboxymethylated to produce soluble multifunctional cellulose with simultaneous presence of cationic and anionic functional groups. Then, carboxymethylated diethylaminoethyl cellulose (CM-DEAEC) were produced by ionic crosslinking. Various instrumental techniques were applied to characterize the microcarriers. Biological tests were also performed to determine cell seeding efficiency, proliferation and attachment on microcarriers. Fabricated CM-DEAEC microcarriers had 1500-1800 µm diameter, +26.0 surface potential, 376% swelling behavior and 233 °C glass transition temperature respectively. The findings showed that CM-DEAEC microcarriers support cellular attachment and proliferation very well and hence are promising materials for cell therapy and tissue engineering applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , DEAE-Celulosa/análogos & derivados , Fibroblastos/citología , Ingeniería de Tejidos/métodos , Adhesión Celular , Proliferación Celular , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA