Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 970, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302477

RESUMEN

X-ray Free Electron Lasers (XFEL) are cutting-edge pulsed x-ray sources, whose extraordinary pulse parameters promise to unlock unique applications. Several new methods have been developed at XFELs; however, no methods are known, which allow ab initio atomic level structure determination using only a single XFEL pulse. Here, we present experimental results, demonstrating the determination of the 3D atomic structure from data obtained during a single 25 fs XFEL pulse. Parallel measurement of hundreds of Bragg reflections was done by collecting Kossel line patterns of GaAs and GaP. To the best of our knowledge with these measurements, we reached the ultimate temporal limit of the x-ray structure solution possible today. These measurements open the way for obtaining crystalline structures during non-repeatable fast processes, such as structural transformations. For example, the atomic structure of matter at extremely non-ambient conditions or transient structures formed in irreversible physical, chemical, or biological processes may be captured in a single shot measurement during the transformation. It would also facilitate time resolved pump-probe structural studies making them significantly shorter than traditional serial crystallography.

2.
Nat Methods ; 17(1): 73-78, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740816

RESUMEN

The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Fotorreceptores Microbianos/química , Conformación Proteica , Luz , Modelos Moleculares , Factores de Tiempo
3.
Sci Data ; 6(1): 18, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944333

RESUMEN

We provide a detailed description of a serial femtosecond crystallography (SFX) dataset collected at the European X-ray free-electron laser facility (EuXFEL). The EuXFEL is the first high repetition rate XFEL delivering MHz X-ray pulse trains at 10 Hz. The short spacing (<1 µs) between pulses requires fast flowing microjets for sample injection and high frame rate detectors. A data set was recorded of a microcrystalline mixture of at least three different jack bean proteins (urease, concanavalin A, concanavalin B). A one megapixel Adaptive Gain Integrating Pixel Detector (AGIPD) was used which has not only a high frame rate but also a large dynamic range. This dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development and for data analysis training for prospective XFEL users.


Asunto(s)
Concanavalina A/química , Proteínas de Plantas/química , Ureasa/química , Cristalización , Cristalografía por Rayos X
4.
Nat Commun ; 9(1): 3487, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154468

RESUMEN

X-ray free-electron lasers (XFELs) enable novel experiments because of their high peak brilliance and femtosecond pulse duration. However, non-superconducting XFELs offer repetition rates of only 10-120 Hz, placing significant demands on beam time and sample consumption. We describe serial femtosecond crystallography experiments performed at the European XFEL, the first MHz repetition rate XFEL, delivering 1.128 MHz X-ray pulse trains at 10 Hz. Given the short spacing between pulses, damage caused by shock waves launched by one XFEL pulse on sample probed by subsequent pulses is a concern. To investigate this issue, we collected data from lysozyme microcrystals, exposed to a ~15 µm XFEL beam. Under these conditions, data quality is independent of whether the first or subsequent pulses of the train were used for data collection. We also analyzed a mixture of microcrystals of jack bean proteins, from which the structure of native, magnesium-containing concanavalin A was determined.

5.
J Synchrotron Radiat ; 25(Pt 2): 565-569, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488938

RESUMEN

Due to the complexity of the underlying pathomechanism, in vivo mouse lung-disease models continue to be of great importance in preclinical respiratory research. Longitudinal studies following the cause of a disease or evaluating treatment efficacy are of particular interest but challenging due to the small size of the mouse lung and the fast breathing rate. Synchrotron-based in-line phase-contrast computed tomography imaging has been successfully applied in lung research in various applications, but mostly at dose levels that forbid longitudinal in vivo studies. Here, the novel charge-integrating hybrid detector MÖNCH is presented, which enables imaging of mouse lungs at a pixel size of 25 µm, in less than 10 s and with an entrance dose of about 70 mGy, which therefore will allow longitudinal lung disease studies to be performed in mouse models.


Asunto(s)
Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Animales , Ratones
6.
J Synchrotron Radiat ; 23(Pt 6): 1462-1473, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27787252

RESUMEN

MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor, e.g. inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2 are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...