Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Med Vet Entomol ; 38(1): 73-82, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37877753

RESUMEN

The hematophagous insect Mepraia spinolai (Hemiptera: Reduviidae: Triatominae) is naturally infected with the protozoan parasite Trypanosoma cruzi, the agent of Chagas disease in humans. In this study, we compared the demographic parameters of M. spinolai with and without T. cruzi infection. We collected the immature life table data of 479 M. spinolai individuals of control cohort (reared on mice without T. cruzi infection) and 563 M. spinolai individuals of treatment cohort (reared on mice with T. cruzi infection). Nymphs were maintained in individual compartments inside a growth chamber (26°C; 65-75%) until adult emergence; moulting and survival were recorded daily. For the adult life table study of the control, we used 24 pairs of adults from the control cohort. For the adult life table study of T. cruzi-infected cohort, 25 infected females were paired with 25 males from the control cohort. Life table data were analysed using bootstrap-match technique based on the age-stage, two-sex life table. The preadult survival rate (0.5282) of the control cohort was significantly higher than that of the infected cohort (0.2913). However, the mean fecundity of reproductive females (Fr = 22.29 eggs/♀) and net reproductive rate of population (R0 = 5.07 offspring/individual) of the 0.5th percentile bootstrap-match control cohort were not significantly different from those of the infected cohort (Fr = 23.35 eggs/♀, R0 = 3.77 offspring/individual). Due to the shorter total preoviposition period and higher proportion of reproductive female, the intrinsic rate of increase (r = 0.0053 d-1 ) and finite rate of increase (λ = 1.0053 d-1 ) of control cohort of M. spinolai were significantly higher than those of the T. cruzi-infected cohort (r = 0.0035 d-1 , λ = 1.0035 d-1 ). These results suggest that T. cruzi infection reduces the population fitness of the Chagas disease vector M. spinolai.


Asunto(s)
Enfermedad de Chagas , Enfermedades de los Roedores , Triatominae , Trypanosoma cruzi , Humanos , Masculino , Femenino , Animales , Ratones , Aptitud Genética , Insectos Vectores/parasitología , Enfermedad de Chagas/veterinaria , Triatominae/parasitología
2.
Plants (Basel) ; 11(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145746

RESUMEN

Alien plant species are colonizing high-elevation areas along roadsides. In this study, we evaluated whether the distributions of alien plants in the central Chilean mountains have reached climatic equilibrium (i.e., upper distribution limits consistent with their climatic requirements). First, we evaluated whether the upper elevational limits of alien plants changed between 2008 and 2018 based on the Mountain Invasion Research Network (MIREN) database. Second, we compared the observed upper elevational limits with the upper limits predicted by each species' global climatic niche. On average across species, the upper elevation limit did not change between 2008 and 2018. However, most species maintained the same limit or shifted downward, while only 23% of the species shifted upwards. This lack of change does not mean that the species' distributions are in equilibrium with the climate, because the observed upper limit was lower than the limit predicted by the global niche model for 87% of species. Our results suggest that alien species in this study region may not only be climate-limited, but could also be limited by other local-scale factors, such as seed dispersal, intermittent disturbance rates, soil type and biotic interactions.

3.
Plants (Basel) ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956437

RESUMEN

Jubaea chilensis (Molina) Baill., also named Chilean palm, is an endemic species found in the coastal area of Mediterranean sclerophyllous forest in Chile. It has a highly restricted and fragmented distribution along the coast, being under intense exploitation and anthropogenic impact. Based on 1038 SNP markers, we evaluated the genetic diversity and population structure among six J. chilensis natural groups encompassing 96% of the species distribution. We observed low levels of genetic diversity, a deficit of heterozygotes (mean HE = 0.024; HO = 0.014), and high levels of inbreeding (mean FIS = 0.424). The fixation index (FST) and Nei's genetic distance pairwise comparisons indicated low to moderate structuring among populations. There was no evidence of isolation by distance (r = -0.214, p = 0.799). In the cluster analysis, we observed a closer relationship among Culimo, Cocalán, and Candelaria populations. Migration rates among populations were low, except for some populations with moderate values. The K value that best represented the spatial distribution of genetic diversity was ∆K = 3. Habitat fragmentation, deterioration of the sclerophyllous forest, lack of long-distance dispersers, and a natural regeneration deficit may have driven inbreeding and low levels of genetic diversity in the palm groves of J. chilensis. Although extant populations are not at imminent risk of extinction, the rate of inbreeding could increase and migration could decrease if the effects of climate change and human impact become more acute.

4.
Perception ; : 3010066221114589, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35989643

RESUMEN

The aim of this work was to evaluate whether the angular elevation of a sound source could generate auditory cues which improve the auditory distance perception in a similar way to that previously reported by visual modality. For this purpose, we compared ADP curves obtained with sources located both at the listeners' ears and at ground level. Our hypothesis was that the participants can interpret the relation between elevation and distance of ground-level sources (which are linked geometrically) so we expected them to perceive their distances more accurately than those at ear level. However, the responses obtained with sources located at ground level were almost identical to those obtained at the height of the listeners' ears, showing that, under the conditions of our experiment, auditory elevation cues do not influence auditory distance perception.

5.
Plants (Basel) ; 11(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35448793

RESUMEN

To understand the factors that limit invasive expansion in alien species, it is critical to predict potential zones of colonization. Climatic niche can be an important way to predict the potential distribution of alien species. This correlation between niche and geographic distribution is called Hutchinson's duality. A combination of global and regional niches allows four invasive stages to be identified: quasi-equilibrium, local adaptation, colonization and sink stage. We studied the invasive stages of six alien leguminous species either in the niche or the geographical space. In five of the six species, a higher proportion of populations were in the quasi-equilibrium stage. Notably, Acacia species had the highest proportion of populations in local adaptation. This picture changed dramatically when we projected the climatic niche in the geographic space: in all species the colonization stage had the highest proportional projected area, ranging from 50 to 90%. Our results are consistent with Hutchinson's duality, which predicts that small areas in the niche space can be translated onto large areas of the geographic space. Although the colonization stage accounted for a low proportion of occurrences, in all species, the models predicted the largest areas for this stage. This study complements invasive stages, projecting them in geographic space.

6.
J Exp Psychol Hum Percept Perform ; 48(5): 467-480, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35389709

RESUMEN

This study aimed to test the hypothesis that associates blindness with a reduced ability to judge the absolute distance from sound sources. Our working hypotheses were the following: (a) Within reach, a blind subject will be able to make up for the lack of vision using proprioceptive information to calibrate the acoustic distance perception cues. (b) As the source becomes unreachable, blind people will show greater biases since, out of reach, the proposed mechanism for calibration could not be used. To approach these topics, we carried out a series of auditory distance experiments in which we asked sighted and blind participants to report their distance estimates verbally or by reaching the sound source. Within-reach results showed that blind participants performed better than (reaching) or similar to (verbal report) the sighted. The verbal report results showed similar biases between both groups. However, blind participants had more compressive responses than the sighted. Furthermore, blind participants showed more biased responses in the far field than in the peripersonal space, while sighted participants showed similar biases regardless of distance. Our results strongly suggest that the blind can calibrate their distance estimations through the use of proprioceptive spatial information. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Asunto(s)
Percepción Auditiva , Percepción de Distancia , Estimulación Acústica , Percepción Auditiva/fisiología , Ceguera , Señales (Psicología) , Percepción de Distancia/fisiología , Humanos , Percepción Espacial/fisiología
7.
BMC Ecol Evol ; 21(1): 172, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496752

RESUMEN

BACKGROUND: One of the ecological impacts of exotic plant invasions may be alteration of the soil microbial community, which may cause changes to the diversity, richness and function of these communities. In order to explore to what extent invasive plants affect the soil microbial community, we performed a meta-analysis based on 46 scientific articles to document the effect of invasive plants on species richness and diversity of bacteria and fungi. We conducted our study across a range of invaded ecosystems including native communities, and evaluated biomass, richness and diversity. We use a random effects model to determine the increase or decrease in the values of the response variables in the presence of invasive plants. RESULTS: The results indicated that the response variable that changed with the invasion of plants was the diversity of bacteria. Bacterial diversity in the soil increases with the presence of invasive plants, specifically herbaceous plants producing allelopathic substances growing in forest ecosystems of temperate zones. CONCLUSIONS: We provide evidence that invasive plants affect the soil biota differentially; however, it is important to consider more variables such as the N and C cycles, since these processes are mediated by soil biota and litter, and chemical compounds released by plants influence them. Changes in bacterial diversity have consequences for the nutrient cycle, enzymatic activity, mineralization rates and soil carbon and nitrogen content.


Asunto(s)
Microbiota , Suelo , Biodiversidad , Plantas , Microbiología del Suelo
8.
AoB Plants ; 13(1): plaa069, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33542801

RESUMEN

Accurate taxonomic identification of alien species is crucial to detect new incursions, prevent or reduce the arrival of new invaders and implement management options such as biological control. Globally, the taxonomy of non-native Prosopis species is problematic due to misidentification and extensive hybridization. We performed a genetic analysis on several Prosopis species, and their putative hybrids, including both native and non-native populations, with a special focus on Prosopis invasions in Eastern Africa (Ethiopia, Kenya and Tanzania). We aimed to clarify the taxonomic placement of non-native populations and to infer the introduction histories of Prosopis in Eastern Africa. DNA sequencing data from nuclear and chloroplast markers showed high homology (almost 100 %) between most species analysed. Analyses based on seven nuclear microsatellites confirmed weak population genetic structure among Prosopis species. Hybrids and polyploid individuals were recorded in both native and non-native populations. Invasive genotypes of Prosopis juliflora in Kenya and Ethiopia could have a similar native Mexican origin, while Tanzanian genotypes likely are from a different source. Native Peruvian Prosopis pallida genotypes showed high similarity with non-invasive genotypes from Kenya. Levels of introduced genetic diversity, relative to native populations, suggest that multiple introductions of P. juliflora and P. pallida occurred in Eastern Africa. Polyploidy may explain the successful invasion of P. juliflora in Eastern Africa. The polyploid P. juliflora was highly differentiated from the rest of the (diploid) species within the genus. The lack of genetic differentiation between most diploid species in their native ranges supports the notion that hybridization between allopatric species may occur frequently when they are co-introduced into non-native areas. For regulatory purposes, we propose to treat diploid Prosopis taxa from the Americas as a single taxonomic unit in non-native ranges.

9.
J Therm Biol ; 87: 102465, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31999600

RESUMEN

Preferential temperature as a physiological feature is crucial for spiders, since it determines the selection of key habitats for their survival and reproduction. In this work, we study the daily and geographical variation of the preferential temperature of the spider Sicarius thomisoides subjected to different degrees of daily thermal oscillation in their habitats. Preferred temperatures differ between coastal and inland populations, but in both cases, there is a marked bimodality in the daily pattern of temperature preference, with two peaks per day that would be given by the changes in the hours of activity. These nocturnal spiders select higher temperatures in the evening (active period) and select lower temperatures during late morning (resting period). In laboratory, spiders have preferred temperatures that differ from those found in their habitats, so they must tolerate or compensate non-preferred temperatures by active thermoregulation in natural conditions.


Asunto(s)
Temperatura Corporal , Movimiento , Fotoperiodo , Arañas/fisiología , Temperatura , Aclimatación , Animales , Ecosistema
10.
Parasit Vectors ; 12(1): 478, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31610815

RESUMEN

BACKGROUND: Mepraia gajardoi and Mepraia spinolai are endemic triatomine vector species of Trypanosoma cruzi, a parasite that causes Chagas disease. These vectors inhabit arid, semiarid and Mediterranean areas of Chile. Mepraia gajardoi occurs from 18° to 25°S, and M. spinolai from 26° to 34°S. Even though both species are involved in T. cruzi transmission in the Pacific side of the Southern Cone of South America, no study has modelled their distributions at a regional scale. Therefore, the aim of this study is to estimate the potential geographical distribution of M. spinolai and M. gajardoi under current and future climate scenarios. METHODS: We used the Maxent algorithm to model the ecological niche of M. spinolai and M. gajardoi, estimating their potential distributions from current climate information and projecting their distributions to future climatic conditions under representative concentration pathways (RCP) 2.6, 4.5, 6.0 and 8.5 scenarios. Future predictions of suitability were constructed considering both higher and lower public health risk situations. RESULTS: The current potential distributions of both species were broader than their known ranges. For both species, climate change projections for 2070 in RCP 2.6, 4.5, 6.0 and 8.5 scenarios showed different results depending on the methodology used. The higher risk situation showed new suitable areas, but the lower risk situation modelled a net reduction in the future potential distribution areas of M. spinolai and M. gajardoi. CONCLUSIONS: The suitable areas for both species may be greater than currently known, generating new challenges in terms of vector control and prevention. Under future climate conditions, these species could modify their potential geographical range. Preventive measures to avoid accidental human vectorial transmission by wild vectors of T. cruzi become critical considering the uncertainty of future suitable areas projected in this study.


Asunto(s)
Enfermedad de Chagas/transmisión , Cambio Climático , Insectos Vectores/fisiología , Triatominae/fisiología , Trypanosoma cruzi/fisiología , Animales , Área Bajo la Curva , Enfermedad de Chagas/epidemiología , Chile/epidemiología , Humanos , Humedad , Insectos Vectores/parasitología , Modelos Biológicos , Filogeografía , Curva ROC , Lluvia , Medición de Riesgo , Temperatura , Triatominae/parasitología
11.
PeerJ ; 7: e7409, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565547

RESUMEN

BACKGROUND AND AIMS: Global climate change is a major threat to biodiversity worldwide. Several arid areas might expand in the future, but it is not clear if this change would be positive or negative for arid-adapted lineages. Here, we explore whether climatic niche properties are involved in the configuration of climate refugia and thus in future species trends. METHODS: To estimate putative climate refugia and potential expansion areas, we used maximum entropy models and four climate-change models to generate current and future potential distributions of 142 plant species endemic to the Atacama and mediterranean Chilean ecosystems. We assessed the relationship between the similarity and breadth of thermal and precipitation niches with the size of climate refugia and areas of potential expansions. KEY RESULTS: We found a positive relationship between breadth and similarity for thermal niche with the size of climate refugia, but only niche similarity of the thermal niche was positively related with the size of expansion areas. Although all lineages would reduce their distributions in the future, few species are predicted to be at risk of extinction in their current distribution, and all of them presented potential expansion areas. CONCLUSION: Species with a broad niche and niche dissimilarity will have larger refugia, and species with niche dissimilarity will have larger expansion areas. In addition, our prediction for arid lineages shows that these species will be moderately affected by climate change.

12.
Sci Rep ; 9(1): 9476, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263231

RESUMEN

We analyse the effects of exploration feedback on reaching measures of perceived auditory peripersonal space (APS) boundary and the auditory distance perception (ADP) of sound sources located within it. We conducted an experiment in which the participants had to estimate if a sound source was (or not) reachable and to estimate its distance (40 to 150 cm in 5-cm steps) by reaching to a small loudspeaker. The stimulus consisted of a train of three bursts of Gaussian broadband noise. Participants were randomly assigned to two groups: Experimental (EG) and Control (CG). There were three phases in the following order: Pretest-Test-Posttest. For all phases, the listeners performed the same task except for the EG-Test phase where the participants reach in order to touch the sound source. We applied models to characterise the participants' responses and provide evidence that feedback significantly reduces the response bias of both the perceived boundary of the APS and the ADP of sound sources located within reach. In the CG, the repetition of the task did not affect APS and ADP accuracy, but it improved the performance consistency: the reachable uncertainty zone in APS was reduced and there was a tendency to decrease variability in ADP.


Asunto(s)
Percepción de Distancia/fisiología , Neurorretroalimentación/fisiología , Localización de Sonidos/fisiología , Adulto , Femenino , Humanos , Masculino
13.
Ecol Evol ; 9(13): 7562-7573, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31346422

RESUMEN

AIM: Tree invasions are a threat to biodiversity conservation, and although it is hard to predict the future spread of invasive tree species, there are tools available which could allow some estimations. The magnitude of spatial spread (a proxy of invasiveness) can be predicted from species climatic requirement (climatic niche) and can be represented by species distribution models (SDMs). We aimed to assess whether Acacia dealbata conserves its niche in the new environment of south-central Chile, and also, to estimate the invasive stage of the species. LOCATION: South-central area of Chile, between the O'Higgins (34°0″0'S) and Aysen Regions (47°0″0'S). METHODS: We used a combination of global, native, and regional data to improve the estimation of the potential distribution of A. dealbata, which has been considered one of the most invasive species of the genus, being registered in at least 34 countries in all the Continents. RESULTS: Our results show that A. dealbata does not conserve its niche in the study area, invading areas with climatic conditions different from those of the native range. It is also not at equilibrium with the environment. According to the global versus regional SDM comparisons, populations present in south-central Chile present different invasion stages. There are some stable populations, but there are other populations colonizing new areas, occupying unsuitable habitats and some of them are adapting to new climatic conditions. Climatic factors, such as precipitation seasonality, could be acting behind the expansion to new environments, and biotic factors or dispersal limitations could be preventing the species to colonize suitable areas. MAIN CONCLUSIONS: The invasion process of A. dealbata is far from stabilizing, and management options should focus on prevention, avoiding, for example, the introduction of the species to Patagonia where the species has not spread yet. More research is needed to complement our results and enhance the development of effective management strategies.

14.
PLoS One ; 14(6): e0219328, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31251787

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0210849.].

15.
PLoS One ; 14(5): e0210849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31125341

RESUMEN

Pine invasion is a global threat that is occurring in native forests of diverse regions of the world. This process is arising in a scenario of rapid forest deforestation and degradation. Therefore, elucidate which forests attributes explain invasibility is a central issue in forest ecology. The Coastal Maulino forest is an endemic forest of central Chile, which has suffered a large history of disturbance, being replaced by large extensions of Pinus radiata plantations. This land transformation conveys high rates of pines invasion into native remnants. In this study we examined to what extent structural features of forest patches explains invasibility of this forest-type. Within eight forest fragments, we sampled 162 plots (10 x 10 m2 each). We quantified seedling pine density and related these estimates with tree cover, litter depth, PAR radiation, and diversity of the resident community. Our results indicate that canopy cover was the most important variable to determine seedling pine density within forest fragments. Our investigation highlights the importance to conserve the forests cover to reduce significantly their invasibility. This action can be effective even if we cannot avoid pine plantations in the region as a source of a massive seed dispersal to forests with well conserved canopy.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Pinus , Chile , Especies Introducidas , Análisis de Componente Principal , Plantones
16.
Behav Res Methods ; 50(3): 1234-1247, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28786043

RESUMEN

In this study we evaluated whether a method of direct location is an appropriate response method for measuring auditory distance perception of far-field sound sources. We designed an experimental set-up that allows participants to indicate the distance at which they perceive the sound source by moving a visual marker. We termed this method Cross-Modal Direct Location (CMDL) since the response procedure involves the visual modality while the stimulus is presented through the auditory modality. Three experiments were conducted with sound sources located from 1 to 6 m. The first one compared the perceived distances obtained using either the CMDL device or verbal report (VR), which is the response method more frequently used for reporting auditory distance in the far field, and found differences on response compression and bias. In Experiment 2, participants reported visual distance estimates to the visual marker that were found highly accurate. Then, we asked the same group of participants to report VR estimates of auditory distance and found that the spatial visual information, obtained from the previous task, did not influence their reports. Finally, Experiment 3 compared the same responses that Experiment 1 but interleaving the methods, showing a weak, but complex, mutual influence. However, the estimates obtained with each method remained statistically different. Our results show that the auditory distance psychophysical functions obtained with the CMDL method are less susceptible to previously reported underestimation for distances over 2 m.


Asunto(s)
Percepción Auditiva/fisiología , Percepción de Distancia/fisiología , Estimulación Acústica/métodos , Adulto , Sesgo , Femenino , Humanos , Masculino , Informe de Investigación , Sonido , Conducta Verbal , Percepción Visual/fisiología
17.
Sci Rep ; 7(1): 7189, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28775372

RESUMEN

In this article, we show that visual distance perception (VDP) is influenced by the auditory environmental context through reverberation-related cues. We performed two VDP experiments in two dark rooms with extremely different reverberation times: an anechoic chamber and a reverberant room. Subjects assigned to the reverberant room perceived the targets farther than subjects assigned to the anechoic chamber. Also, we found a positive correlation between the maximum perceived distance and the auditorily perceived room size. We next performed a second experiment in which the same subjects of Experiment 1 were interchanged between rooms. We found that subjects preserved the responses from the previous experiment provided they were compatible with the present perception of the environment; if not, perceived distance was biased towards the auditorily perceived boundaries of the room. Results of both experiments show that the auditory environment can influence VDP, presumably through reverberation cues related to the perception of room size.


Asunto(s)
Estimulación Acústica , Percepción de Distancia , Ambiente , Percepción Visual , Adulto , Señales (Psicología) , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Front Psychol ; 8: 969, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690556

RESUMEN

Previous studies on the effect of spectral content on auditory distance perception (ADP) focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction) or when the sound travels distances >15 m (high-frequency energy losses due to air absorption). Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1-6 m) influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum) of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave) pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects). Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation). The results obtained in this study show that, depending on the spectrum of the auditory stimulus, reverberation can degrade ADP rather than improve it.

19.
Environ Entomol ; 45(6): 1379-1385, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28028084

RESUMEN

The brown widow spider, Latrodectus geometricus C. L. Koch, 1841, is a large spider of the family Theridiidae that belongs to a genus of medical interest owing to its potent neurotoxic venom, which causes severe pain in humans. In America, this alien spider has been found in virtually all countries in the region, mainly associated with human dwellings, but also in agricultural sectors. However, the invasive process and potential distribution of this invasive species across the American continent are completely unknown. In this context, using a combination of both global and regional niche models, it is possible to hypothesize the invasive phase of the species as well as the geographic space where these different phases occur. By comparing the global and regional niches of L. geometricus, we examined its invasive process and potential distribution across the American continent. This work is an innovative approach to understanding the invasion of the brown widow spider in this area and the ecological processes that underlie this invasion. In this context, the global and regional niche comparison constitutes an appropriate tool to account for the complexities of the invasive process, generating different hypotheses amenable to being tested in future studies.


Asunto(s)
Distribución Animal , Especies Introducidas , Modelos Biológicos , Arañas/fisiología , Animales , Animales Ponzoñosos/fisiología , América del Norte , América del Sur
20.
PLoS One ; 11(5): e0156029, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27195983

RESUMEN

Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of naturally established individuals because this improves the accuracy of predictions about their distribution ranges.


Asunto(s)
Anacardiaceae/fisiología , Ecosistema , Especies Introducidas , Microclima , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA