Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(24): 25704-25714, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911790

RESUMEN

The main goal of traditional methods for sweetening natural gas (NG) is to remove hydrogen sulfide (H2S) and significantly lower carbon dioxide (CO2). However, when NG processes are integrated into the carbon capture and storage (CCS) framework, there is potential for synergy between these two technologies. A steady-state model utilizing a hybrid solvent consisting of N-methyl-2-pyrrolidone (NMP) and monoethanolamine (MEA) has been developed to successfully anticipate the CO2 and H2S capture process from NG. The model was tested against important variables affecting process performance. This article specifically explores the impact of operational parameters such as lean amine temperature, absorber pressure, and amine flow rate on the concentrations of CO2 and H2S in the sweet gas and reboiler duty. The result shows that hybrid solvents (MEA + NMP) perform better in removing acid gases and reducing reboiler duty than conventional chemical solvent MEA. The primary purpose is to meet product requirements while consuming the least energy possible, which is in line with any process plant's efficiency goals.

2.
Sci Total Environ ; 665: 196-212, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30772550

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of benzene rings. The objective of this research was to identify the optimum condition for the degradation of PAHs contaminated water using photo-Fenton oxidation process via response surface methodology (RSM). Aqueous solution was prepared and potable water samples were collected from water treatment plants in Perak Tengah, Perak, Malaysia in September 2016. The reaction time, pH, molarity of H2O2 and FeSO4 were analyzed followed by RSM using aqueous solution. A five level central composite design with quadratic model was used to evaluate the effects and interactions of these parameters. The response variable was the percentage of total organic carbon (TOC) removal. PAHs quantification was done using gas chromatography mass spectrometry analysis. The regression line fitted well with the data with R2 value of 0.9757. The lack of fit test gives the highest value of Sum of Squares (15,666.64) with probability F value 0.0001 showing significant quadratic model. The optimum conditions were established corresponding to the percentage of TOC removal. The PAHs removal efficiency for potable water samples ranged from 76.4% to 91% following the first order of kinetic rates with R2 values of >0.95. Conventional water treatment techniques are not effective for PAHs removal. Thus, advanced oxidation processes may be considered as an alternative to conventional water treatment techniques in Malaysia and other developing countries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA