Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; 138: 25-36, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30236524

RESUMEN

In amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction and oxidative stress form a vicious cycle that promotes neurodegeneration and muscle wasting. To quantify the disease-stage-dependent changes of mitochondrial function and their relationship to the generation of reactive oxygen species (ROS), we generated double transgenic mice (G93A/cpYFP) that carry human ALS mutation SOD1G93A and mt-cpYFP transgenes, in which mt-cpYFP detects dynamic changes of ROS-related mitoflash events at individual mitochondria level. Compared with wild type mice, mitoflash activity in the SOD1G93A (G93A) mouse muscle showed an increased flashing frequency prior to the onset of ALS symptom (at the age of 2 months), whereas the onset of ALS symptoms (at the age of 4 months) is associated with drastic changes in the kinetics property of mitoflash signal with prolonged full duration at half maximum (FDHM). Elevated levels of cytosolic ROS in skeletal muscle derived from the SOD1G93A mice were confirmed with fluorescent probes, MitoSOX™ Red and ROS Brite™570. Immunoblotting analysis of subcellular mitochondrial fractionation of G93A muscle revealed an increased expression level of cyclophilin D (CypD), a regulatory component of the mitochondrial permeability transition pore (mPTP), at the age of 4 months but not at the age of 2 months. Transient overexpressing of SOD1G93A in skeletal muscle of wild type mice directly promoted mitochondrial ROS production with an enhanced mitoflash activity in the absence of motor neuron axonal withdrawal. Remarkably, the SOD1G93A-induced mitoflash activity was attenuated by the application of cyclosporine A (CsA), an inhibitor of CypD. Similar to the observation with the SOD1G93A transgenic mice, an increased expression level of CypD was also detected in skeletal muscle following transient overexpression of SOD1G93A. Overall, this study reveals a disease-stage-dependent change in mitochondrial function that is associated with CypD-dependent mPTP opening; and the ALS mutation SOD1G93A directly contributes to mitochondrial dysfunction in the absence of motor neuron axonal withdrawal.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Transgénicos , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Mutación , Superóxido Dismutasa/genética
2.
Neurosci Lett ; 663: 12-17, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29452610

RESUMEN

The plasma membrane Ca2+-ATPase (PMCA) pumps play a critical role in the maintenance of calcium (Ca2+) homeostasis, crucial for optimal neuronal function and cell survival. Loss of Ca2+ homeostasis is a key precursor in neuronal dysfunction associated with brain aging and in the pathogenesis of neurodegenerative disorders. In this article, we review evidence showing age-related changes in the PMCAs in synaptic plasma membranes (SPMs) and lipid raft microdomains isolated from rat brain. Both PMCA activity and protein levels decline progressively with increasing age. However, the loss of activity is disproportionate to the reduction of protein levels suggesting the presence of dysfunctional PMCA molecules in aged brain. PMCA activity is also diminished in post-mortem human brain samples from Alzheimer's disease and Parkinson's disease patients and in cell models of these neurodegenerative disorders. Experimental reduction of the PMCAs not only alter Ca2+ homeostasis but also have diverse effects on neurons such as reduced neuritic network, impaired release of neurotransmitter and increased susceptibility to stressful stimuli, particularly to agents that elevate intracellular Ca2+ [Ca2+]i. Loss of PMCA is likely to contribute to neuronal dysfunction observed in the aging brain and in the development of age-dependent neurodegenerative disorders. Therapeutic (pharmacological and/or non-pharmacological) approaches that can enhance PMCA activity and stabilize [Ca2+]i homeostasis may be capable of preventing, slowing, and/or reversing neuronal degeneration.


Asunto(s)
Encéfalo/metabolismo , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Encéfalo/patología , Membrana Celular/patología , Humanos , Enfermedades Neurodegenerativas , Estrés Oxidativo/fisiología , Filogenia , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...