Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906737

RESUMEN

Functional Near-Infrared Spectroscopy (fNIRS) is a hemodynamic modality in human cognitive workload assessment receiving popularity due to its easier implementation, non-invasiveness, low cost and other benefits from the signal-processing point of view. Wearable wireless fNIRS systems used in research have promisingly shown that fNIRS could be used in cognitive workload assessment in out-of-the-lab scenarios, such as in operators' cognitive workload monitoring. In such a scenario, the wearability of the system is a significant factor affecting user comfort. In this respect, the wearability of the system can be improved if it is possible to minimize an fNIRS system without much compromise of the cognitive workload detection accuracy. In this study, cognitive workload-related hemodynamic changes were acquired using an fNIRS system covering the whole forehead, which is the region of interest in most cognitive workload-monitoring studies. A machine learning approach was applied to explore how the mean accuracy of the cognitive workload classification accuracy varied across various sensing locations on the forehead such as the Left, Mid, Right, Left-Mid, Right-Mid and Whole forehead. The statistical significance analysis result showed that the Mid location could result in significant cognitive workload classification accuracy compared to Whole forehead sensing, with a statistically insignificant difference in the mean accuracy. Thus, the wearable fNIRS system can be improved in terms of wearability by optimizing the sensor location, considering the sensing of the Mid location on the forehead for cognitive workload monitoring.


Asunto(s)
Espectroscopía Infrarroja Corta , Dispositivos Electrónicos Vestibles , Cognición , Humanos , Monitoreo Fisiológico , Procesamiento de Señales Asistido por Computador , Tecnología Inalámbrica , Carga de Trabajo
2.
J Neuroeng Rehabil ; 17(1): 50, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299460

RESUMEN

BACKGROUND: Prediction of Gait intention from pre-movement Electroencephalography (EEG) signals is a vital step in developing a real-time Brain-computer Interface (BCI) for a proper neuro-rehabilitation system. In that respect, this paper investigates the feasibility of a fully predictive methodology to detect the intention to start and stop a gait cycle by utilizing EEG signals obtained before the event occurrence. METHODS: An eight-channel, custom-made, EEG system with electrodes placed around the sensorimotor cortex was used to acquire EEG data from six healthy subjects and two amputees. A discrete wavelet transform-based method was employed to capture event related information in alpha and beta bands in the time-frequency domain. The Hjorth parameters, namely activity, mobility, and complexity, were extracted as features while a two-sample unpaired Wilcoxon test was used to get rid of redundant features for better classification accuracy. The feature set thus obtained was then used to classify between 'walk vs. stop' and 'rest vs. start' classes using support vector machine (SVM) classifier with RBF kernel in a ten-fold cross-validation scheme. RESULTS: Using a fully predictive intention detection system, 76.41±4.47% accuracy, 72.85±7.48% sensitivity, and 79.93±5.50% specificity were achieved for 'rest vs. start' classification. While for 'walk vs. stop' classification, the obtained mean accuracy, sensitivity, and specificity were 74.12±4.12%, 70.24±6.45%, and 77.78±7.01% respectively. Overall average True Positive Rate achieved by this methodology was 72.06±8.27% with 1.45 False Positives/min. CONCLUSION: Extensive simulations and resulting classification results show that it is possible to achieve statistically similar intention detection accuracy using either only pre-movement EEG features or trans-movement EEG features. The classifier performance shows the potential of the proposed methodology to predict human movement intention exclusively from the pre-movement EEG signal to be applied in real-life prosthetic and neuro-rehabilitation systems.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos , Intención , Movimiento/fisiología , Procesamiento de Señales Asistido por Computador , Corteza Somatosensorial/fisiología , Adulto , Amputados/rehabilitación , Electroencefalografía/instrumentación , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Máquina de Vectores de Soporte , Adulto Joven
3.
Biomed Eng Online ; 17(1): 120, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200984

RESUMEN

BACKGROUND: The non-invasive nature of near-infrared spectroscopy (NIRS) makes it a widely accepted method for blood oxygenation measurement in various parts of the human body. One of the main challenges in this method lies in the successful removal of movement artefacts in the detected signal. In this respect, multi-channel inertia measurement unit (IMU) containing accelerometer, gyroscope and magnetometer can be used for better modelling of movement artefact than using accelerometer only, which as a result, movement artefact can be more accurately removed. METHODS: A wearable two-channel continuous wave NIRS system, incorporating an IMU sensor which contain accelerometer, gyroscope and magnetometer in it, was developed to record NIRS signal along with the simultaneous recording of movement artefacts related signal using the IMU. Four healthy subjects volunteered in the recording of the NIRS signals. During the recording from the first two subject, movement artefacts were simulated in one of the NIRS channels by tapping the photodiode sensor nearby. The corresponding IMU data for the simulated movement artefacts were used to estimate the artefacts in the corrupted signal by autoregressive with exogenous input method and subtracted from the corrupted signal to remove the artefacts in the NIRS signal. Signal-to-noise ratio (SNR) improvement was used to evaluate the performance of the movement artefacts removal process. The performance of the movement artefacts estimation and removal were compared using accelerometer only, accelerometer and gyroscope, and accelerometer, gyroscope and magnetometer data from IMU sensor to estimate the artefact in NIRS reading. For the remaining two subjects the NIRS signal was recorded by natural movement artefacts impact and the results of artefacts removal was compared using accelerometer only, accelerometer and gyroscope, and accelerometer, gyroscope and magnetometer data from IMU sensor to estimate the artefact in NIRS reading. RESULTS: The quantitative and qualitative results revealed that the SNR improvement increases with the number of IMU channels used in the artefacts estimation, and there were approximately 5-11 dB increase in SNR when nine channel IMU data were used rather than using only three channel accelerometer data only. The artefact removal from natural movements also demonstrated that the combination of gyroscope and magnetometer sensors with accelerometer provided better estimation and removal of the movement artefacts, which was revealed by the minimal change of the HbO2 and Hb level before, during and after movement artefacts occurred in the NIRS signal. CONCLUSION: The movement artefacts in NIRS can be more accurately estimated and removed by using accelerometer, gyroscope and magnetograph signals from an integrated IMU sensor than using accelerometer signal only.


Asunto(s)
Artefactos , Movimiento , Procesamiento de Señales Asistido por Computador , Espectroscopía Infrarroja Corta , Análisis de los Mínimos Cuadrados , Oxígeno/sangre , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA