Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.124
Filtrar
1.
Transplant Cell Ther ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277112

RESUMEN

BACKGROUND: In vivo T-cell depletion (TCD) using alemtuzumab decreases the risk of Graft vs. Host Disease (GvHD) in recipients of allogeneic hematopoietic stem cell transplant (allo-HSCT). However, this approach increases the risk of infections post-allo-HSCT, including Cytomegalovirus (CMV). Letermovir is approved for the use in CMV prophylaxis post-allo-HSCT. Few studies have investigated the efficacy of letermovir in patients receiving alemtuzumab. METHODS: This is a single-center retrospective study describing our institutional experience using letermovir in recipients of alemtuzumab TCD allo-HSCT from unrelated donors (URD). The primary outcome was the cumulative incidence of significant CMV infection (defined as viremia leading to preemptive antiviral therapy or CMV disease) within 100 days post-transplant. Secondary outcomes included the cumulative incidence of acute GvHD (grade ≥ 2), the cumulative incidence of extensive chronic GvHD, and overall survival. RESULTS: A total of 84 alemtuzumab TCD URD allo-HSCT recipients were included in the analysis, 30 of whom received letermovir (letermovir group) and 54 who did not receive letermovir (control group). The median age was 59 years (range: 26 - 75 years) and 55.5 years (range: 20 - 73 years) in the letermovir and control group, respectively. Most recipients (66.7%) in both groups received unrelated matched allografts, and myeloid neoplasms were the most common indication for allo-HSCT. A significantly lower cumulative incidence of significant CMV infection within 100 days was seen in the letermovir group compared to the control group (10.0% [95% CI: 2.5 - 23.9%] vs 55.6% [95% CI: 41.2 - 67.8%], p < 0.0001). There was no statistically significant difference in the incidence of acute GvHD (grade ≥ 2) or overall survival between the two groups. However, lower rates of extensive chronic GvHD were noted in the letermovir group (10.5% [95% CI: 2.6 - 24.9%] vs. 36.5% [95% CI: 23.6 - 49.5%], p=0.0126). CONCLUSIONS: These results demonstrate the efficacy of letermovir in decreasing the rates of clinically significant CMV infection in patients undergoing alemtuzumab T-cell depleted allo-HSCT.

2.
Rev Bras Ortop (Sao Paulo) ; 59(4): e626-e631, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39239589

RESUMEN

As in many areas of knowledge, rapid prototyping technology or additive manufacturing, popularly known as three-dimensional (3D) printing, has been gaining ground in medicine in recent years, with different applications. Numerous are the benefits of this science in orthopedic surgery, by allowing the conversion of imaging tests into 3D models. Therefore, the aim of the present study is to describe a practical step-by-step for the printing of parts from patient imaging. This is a methodological study, considering preoperative computed tomography (CT) scans of patients with orthopedic deformities. Initially, the digital imaging and communications in medicine (DICOM) examination should be imported into the 3D reconstruction software of anatomical structures for the segmentation and conversion process to the stereolithography (STL) format. The next step is to import the STL file into the 3D modeling software, which allows you to work freely by manipulating the 3D mesh. The 3D models were printed additively on the GTMax3D Core A3v2 fused deposition modeling (FDM) technology printer.

3.
Acta Trop ; 259: 107370, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39216810

RESUMEN

Bartonella is a bacterial genus that comprises arthropod-borne microorganisms. Several Bartonella isolates have been detected from bats worldwide, which are thought to be undescribed species. We aimed to test the presence of Bartonella spp. among bats from Colombia, and evaluate the genetic diversity of bat-associated Bartonella spp. through phylogenetic analyses. A total of 108 bat blood samples were collected from three bat species (Carollia perspicillata, Mormoops megalophylla, and Natalus tumidirostris) that inhabit the Macaregua cave. The Bartonella ssrA gene was targeted through real-time and end-point PCR; additionally, the gltA and rpoB genes were detected by end-point PCR. All obtained amplicons were purified and bidirectionally sequenced for phylogenetic analysis using a concatenated supermatrix and a supertree approaches. A detection frequency of 49.1 % (53/108) for Bartonella spp. was evidenced among bat blood samples, of which 59.1 % (26/44), 54.3 % (19/35) and 27.6 % (8/29) were identified in Carollia perspicillata, Natalus tumidirostris and Mormoops megalophylla respectively. A total of 35 ssrA, 5 gltA and 4 rpoB good-quality sequences were obtained which were used for phylogenetic analysis. All obtained bat sequences clustered together with sequences obtained from Neotropical bat species into two bat-restricted clades namely clade A and clade N. We detected the presence of Bartonella spp. that clustered within two different bat-associated Bartonella clades, giving the first data of the genetic diversity of these bacteria among bats from Colombia.


Asunto(s)
Infecciones por Bartonella , Bartonella , Cuevas , Quirópteros , Variación Genética , Filogenia , Animales , Quirópteros/microbiología , Bartonella/genética , Bartonella/clasificación , Bartonella/aislamiento & purificación , Colombia , Cuevas/microbiología , Infecciones por Bartonella/veterinaria , Infecciones por Bartonella/microbiología , Infecciones por Bartonella/epidemiología , ADN Bacteriano/genética , Análisis de Secuencia de ADN
4.
Trop Med Infect Dis ; 9(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39195606

RESUMEN

Leptospira is a bacterial genus that includes several pathogenic species related to leptospirosis. In Colombia, leptospirosis is a mandatorily reported disease, widely distributed across the country. In the Villeta municipality, leptospirosis has been identified as an important cause of febrile illness; however, to date, no studies have been performed to identify the circulating species. A genus-specific qualitative qPCR was performed on DNA extracted from febrile patients' acute-phase whole-blood samples targeting a fragment of the rrs gene. Positive qPCR samples were further amplified for the adk, icdA, LipL32, LipL41, rrs, and secY genes through conventional PCR for sequencing. All high-quality obtained sequences were further assessed through concatenated phylogenetic analysis. A total of 25% (14/56) of febrile patients' acute blood samples were positive for Leptospira spp. High-quality sequences were obtained for only five genes, and analysis through concatenated phylogeny identified that all sequences clustered within the P1/pathogenic clade; some of them formed a robustly supported clade with Leptospira santarosai, and others were closely related with other Leptospira species but exhibited considerable genetic divergence. We describe the presence of pathogenic Leptospira species among febrile patients from the Villeta municipality and identify L. santarosai and other Leptospira species as causative agents of leptospirosis in the region.

5.
Biochem Biophys Res Commun ; 733: 150572, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39191187

RESUMEN

Fungal lipolytic enzymes play crucial roles in various lipid bio-industry processes. Here, we elucidated the biochemical and structural characteristics of an unexplored fungal lipolytic enzyme (TaLip) from Thermoascus aurantiacus var. levisporus, a strain renowned for its significant industrial relevance in carbohydrate-active enzyme production. TaLip belongs to a poorly understood phylogenetic branch within the class 3 lipase family and prefers to hydrolyze mainly short-chain esters. Nonetheless, it also displays activity against natural long-chain triacylglycerols. Furthermore, our analyses revealed that the surfactant sodium dodecyl sulfate (SDS) enhances the hydrolytic activity of TaLip on pNP butyrate by up to 5.0-fold. Biophysical studies suggest that interactions with SDS may prevent TaLip aggregation, thereby preserving the integrity and stability of its monomeric form and improving its performance. These findings highlight the resilience of TaLip as a lipolytic enzyme capable of functioning in tandem with surfactants, offering an intriguing enzymatic model for further exploration of surfactant tolerance and activation in biotechnological applications.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39107203

RESUMEN

BACKGROUND: KIT p.D816 mutation is strongly associated with systemic mastocytosis (SM). Next-generation sequencing (NGS) is now routinely performed in almost all bone marrow sample and KIT mutations are detected from patients who are not known or suspected to have SM. Therefore, we wanted to assess if KIT mutations in this patient population are associated with unsuspected SM. METHODS: We searched NGS result in our institution with positive result for KIT mutation from patients with known/suspected myeloid neoplasms. Patients with previously documented history of systemic mastocytosis were excluded. Bone marrow biopsies from patients with KIT mutation were assessed with immunohistochemical stains for CD117 and mast cell tryptase (MST). RESULTS: Bone marrow biopsies were assessed with immunohistochemical stains for CD117 and mast cell tryptase (n = 49). Most patients had acute myeloid leukemia (AML, n = 38) or chronic myelomonocytic leukemia (CMML, n = 6). Immunohistochemical stains for CD117 and tryptase were performed in all 49 patients. A total of 4 patients (8.2%) showed mast cell nodules where spindled shaped mast cells were present, meeting the WHO criteria for SM. All four patients had KIT p.D816V mutation and had high mutant allelic frequency (∼ 50%) except one patient (1%). CONCLUSION: We discovered approximately 8% of patients who had myeloid neoplasms with unexpected KIT mutations fulfilled the diagnostic criteria for systemic mastocytosis after additional immunohistochemical studies. Our data support that application of additional immunohistochemical studies is recommended to identify underrecognized SM when KIT mutations are found by molecular assays.

7.
FEBS J ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975859

RESUMEN

A rise in temperature triggers a structural change in the human Type I 40 kDa heat shock protein (Hsp40/DnaJ), known as DNAJA1. This change leads to a less compact structure, characterized by an increased presence of solvent-exposed hydrophobic patches and ß-sheet-rich regions. This transformation is validated by circular dichroism, thioflavin T binding, and Bis-ANS assays. The formation of this ß-sheet-rich conformation, which is amplified in the absence of zinc, leads to protein aggregation. This aggregation is induced not only by high temperatures but also by low ionic strength and high protein concentration. The aggregated conformation exhibits characteristics of an amyloidogenic structure, including a distinctive X-ray diffraction pattern, seeding competence (which stimulates the formation of amyloid-like aggregates), cytotoxicity, resistance to SDS, and fibril formation. Interestingly, the yeast Type I Ydj1 also tends to adopt a similar ß-sheet-rich structure under comparable conditions, whereas Type II Hsp40s, whether human or from yeast, do not. Moreover, Ydj1 aggregates were found to be cytotoxic. Studies using DNAJA1- and Ydj1-deleted mutants suggest that the zinc-finger region plays a crucial role in amyloid formation. Our discovery of amyloid aggregation in a C-terminal deletion mutant of DNAJA1, which resembles a spliced homolog expressed in the testis, implies that Type I Hsp40 co-chaperones may generate amyloidogenic species in vivo.

8.
J Environ Manage ; 366: 121746, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986375

RESUMEN

Mismanagement of the nitrogen (N) fertilization in agriculture leads to low N use efficiency (NUE) and therefore pollution of waters and atmosphere due to NO3- leaching, and N2O and NH3 emissions. The use of N simulation models of the soil-plant system can help improve the N fertilizer management increasing NUE and decreasing N pollution issues. However, many N simulation models lack balance between complexity and uncertainty with the result that they are not applied in actual practice. The NITIRSOIL is a one-dimensional transient-state model with a monthly time step that aims at addressing this lack in the estimation of, mainly, dry matter yield (DMY), crop N uptake (Nupt), soil mineral N (Nmin), and NO3- leaching in agricultural fields. According to its global sensitivity analysis for horticulture, the NITIRSOIL simulations of the aforementioned outputs mostly depend on the critical N dilution curve, harvest index, dry matter fraction, potential fresh yield and nitrification coefficients. According to its validation for 35 nitrogen fertilization trials with 11 vegetables under semi-arid Mediterranean climate in Eastern Spain, the NITIRSOIL presents indices of agreement between 0.87 and 0.97 for the prediction of total dry matter, DMY, Nupt, NO3- leaching and soil Nmin at crop season end. Therefore, the NITIRSOIL model can be used in actual practice to improve the sustainability of the N management in, particularly horticulture, due to the balance it features between complexity and prediction uncertainty. For this aim, the NITRISOIL can be used either on its own, or in combination with "Nmin" on-site N fertilization recommendation methods, or even could be implemented as the calculation core of decision support systems.


Asunto(s)
Agricultura , Fertilizantes , Nitrógeno , Suelo , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Agricultura/métodos , Incertidumbre , Suelo/química , Modelos Teóricos
9.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826462

RESUMEN

Normal hematopoietic stem and progenitor cells (HSPCs) inherently accumulate somatic mutations and lose clonal diversity with age, processes implicated in the development of myeloid malignancies 1 . The impact of exogenous stressors, such as cancer chemotherapies, on the genomic integrity and clonal dynamics of normal HSPCs is not well defined. We conducted whole-genome sequencing on 1,032 single-cell-derived HSPC colonies from 10 patients with multiple myeloma (MM), who had undergone various chemotherapy regimens. Our findings reveal that melphalan treatment distinctly increases mutational burden with a unique mutation signature, whereas other MM chemotherapies do not significantly affect the normal mutation rate of HSPCs. Among these therapy-induced mutations were several oncogenic drivers such as TET2 and PPM1D . Phylogenetic analysis showed a clonal architecture in post-treatment HSPCs characterized by extensive convergent evolution of mutations in genes such as TP53 and PPM1D . Consequently, the clonal diversity and structure of post-treatment HSPCs mirror those observed in normal elderly individuals, suggesting an accelerated clonal aging due to chemotherapy. Furthermore, analysis of matched therapy-related myeloid neoplasm (t-MN) samples, which occurred 1-8 years later, enabled us to trace the clonal origin of t-MNs to a single HSPC clone among a group of clones with competing malignant potential, indicating the critical role of secondary mutations in dictating clonal dominance and malignant transformation. Our findings suggest that cancer chemotherapy promotes an oligoclonal architecture with multiple HSPC clones possessing competing leukemic potentials, setting the stage for the selective emergence of a singular clone that evolves into t-MNs after acquiring secondary mutations. These results underscore the importance of further systematic research to elucidate the long-term hematological consequences of cancer chemotherapy.

10.
Opt Lett ; 49(12): 3332-3335, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875613

RESUMEN

On-chip pump rejection filters are key building blocks in a variety of applications exploiting nonlinear phenomena, including Raman spectroscopy and photon-pair generation. Ultrahigh rejection has been achieved in the silicon technology by non-coherent cascading of modal-engineered Bragg filters. However, this concept cannot be directly applied to silicon nitride waveguides as the comparatively lower index contrast hampers the suppression of residual light propagating in the orthogonal polarization, limiting the achievable rejection. Here, we propose and demonstrate a novel, to the best of our knowledge, strategy to overcome this limitation based on non-coherent cascading of the modal- and polarization-engineered Bragg filters. Based on this concept, we experimentally demonstrate a rejection exceeding 60 dB for both polarizations, with a bandwidth of 4.4 nm. This is the largest rejection reported for silicon nitride Bragg gratings supporting both polarizations.

11.
Opt Express ; 32(10): 17400-17408, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858924

RESUMEN

This article presents low-loss mid-infrared waveguides fabricated on a Ge-rich SiGe strain-relaxed buffer grown on an industrial-scale 200 mm wafer, with propagation losses below 0.5 dB/cm for 5-7 µm wavelengths and below 5 dB/cm up to 11 µm. Investigation reveals free-carrier absorption as the primary loss factor for 5-6.5 µm and silicon multiphonon absorption beyond 7 µm wavelength. This result establishes a foundation for a scalable, silicon-compatible mid-infrared platform, enabling the realisation of photonic integrated circuits for various applications in the mid-infrared spectral region, from hazard detection to spectroscopy and military imaging.

12.
Adv Healthc Mater ; : e2400612, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879782

RESUMEN

Rapid and accurate assessment of conditions characterized by altered blood flow, cardiac blood pooling, or internal bleeding is crucial for diagnosing and treating various clinical conditions. While widely used imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound offer unique diagnostic advantages, they fall short for specific indications due to limited penetration depth and prolonged acquisition times. Magnetic particle imaging (MPI), an emerging tracer-based technique, holds promise for blood circulation assessments, potentially overcoming existing limitations with reduction in background signals and high temporal and spatial resolution, below the millimeter scale. Successful imaging of blood pooling and impaired flow necessitates tracers with diverse circulation half-lives optimized for MPI signal generation. Recent MPI tracers show potential in imaging cardiovascular complications, vascular perforations, ischemia, and stroke. The impressive temporal resolution and penetration depth also position MPI as an excellent modality for real-time vessel perfusion imaging via functional MPI (fMPI). This review summarizes advancements in optimized MPI tracers for imaging blood circulation and analyzes the current state of pre-clinical applications. This work discusses perspectives on standardization required to transition MPI from a research endeavor to clinical implementation and explore additional clinical indications that may benefit from the unique capabilities of MPI.

13.
ACS Nano ; 18(23): 15284-15302, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814737

RESUMEN

Magnetic hyperthermia holds significant therapeutic potential, yet its clinical adoption faces challenges. One obstacle is the large-scale synthesis of high-quality superparamagnetic iron oxide nanoparticles (SPIONs) required for inducing hyperthermia. Robust and scalable manufacturing would ensure control over the key quality attributes of SPIONs, and facilitate clinical translation and regulatory approval. Therefore, we implemented a risk-based pharmaceutical quality by design (QbD) approach for SPION production using flame spray pyrolysis (FSP), a scalable technique with excellent batch-to-batch consistency. A design of experiments method enabled precise size control during manufacturing. Subsequent modeling linked the SPION size (6-30 nm) and composition to intrinsic loss power (ILP), a measure of hyperthermia performance. FSP successfully fine-tuned the SPION composition with dopants (Zn, Mn, Mg), at various concentrations. Hyperthermia performance showed a strong nonlinear relationship with SPION size and composition. Moreover, the ILP demonstrated a stronger correlation to coercivity and remanence than to the saturation magnetization of SPIONs. The optimal operating space identified the midsized (15-18 nm) Mn0.25Fe2.75O4 as the most promising nanoparticle for hyperthermia. The production of these nanoparticles on a pilot scale showed the feasibility of large-scale manufacturing, and cytotoxicity investigations in multiple cell lines confirmed their biocompatibility. In vitro hyperthermia studies with Caco-2 cells revealed that Mn0.25Fe2.75O4 nanoparticles induced 80% greater cell death than undoped SPIONs. The systematic QbD approach developed here incorporates process robustness, scalability, and predictability, thus, supporting the clinical translation of high-performance SPIONs for magnetic hyperthermia.


Asunto(s)
Hipertermia Inducida , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico
14.
Parasitol Res ; 123(5): 207, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713234

RESUMEN

Biomarkers are specific molecular, histological, or physiological characteristics of normal or pathogenic biological processes and are promising in the diagnosis of gastrointestinal nematodes (GINs). Although some biomarkers have been validated for infection by Ostertagia sp. in cattle raised in temperate regions, there is a lack of information for tropical regions. The aim of this project was to assess potential biomarkers and validate the most promising. In the first study, 36 bovines (Nelore breed) naturally infected by GINs were distributed into two groups: infected (not treated with anthelmintic) and treated (treated with fenbendazole on days 0, 7, 14, 21, 28, 42, and 56). The variables of interest were live weight, fecal egg count, hemogram, serum biochemical markers, phosphorus, gastrin, and pepsinogen. In the second step, pepsinogen was assessed in cattle of the Nelore breed distributed among three groups: infected (not treated with anthelmintic), MOX (treated with moxidectin), and IVM + BZD (treated with ivermectin + albendazole). In the first study, no difference between groups was found for weight, albumin, hematocrit (corpuscular volume [CV]), erythrocytes, or hemoglobin. Negative correlations were found between pepsinogen and both CV and albumin, and albumin was negatively correlated with the percentage of Haemonchus sp. in the fecal culture. Among the biomarkers, only pepsinogen differentiated treated and infected (beginning with the 28th day of the study). In the second study, a reduction in pepsinogen was found after anthelmintic treatment. Therefore, pepsinogen is a promising biomarker of worms in cattle naturally infected by the genera Haemonchus and Cooperia in tropical areas.


Asunto(s)
Biomarcadores , Enfermedades de los Bovinos , Heces , Infecciones por Nematodos , Clima Tropical , Animales , Bovinos , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/tratamiento farmacológico , Biomarcadores/sangre , Infecciones por Nematodos/veterinaria , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/tratamiento farmacológico , Heces/parasitología , Recuento de Huevos de Parásitos , Antihelmínticos/uso terapéutico , Nematodos/aislamiento & purificación , Nematodos/clasificación , Nematodos/efectos de los fármacos , Enfermedades Gastrointestinales/parasitología , Enfermedades Gastrointestinales/veterinaria , Parasitosis Intestinales/veterinaria , Parasitosis Intestinales/parasitología , Fenbendazol/uso terapéutico
15.
Cytotherapy ; 26(9): 1026-1032, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38819365

RESUMEN

BACKGROUND AIMS: The success of chimeric antigen receptor (CAR) T-cell therapy in treating B-cell malignancies has led to the evaluation of CAR T-cells targeting a variety of other malignancies. Although the efficacy of CAR T-cells is enhanced when administered post-lymphodepleting chemotherapy, this can trigger bone marrow suppression and sustained cytopenia after CD19.CAR T-cell therapy. Additionally, systemic inflammation associated with CAR T-cell activity may contribute to myelosuppression. Cytopenias, such as neutropenia and thrombocytopenia, elevate the risk of severe infections and bleeding, respectively. However, data on the incidence of prolonged cytopenias after immune effector therapy in the solid tumor context remain limited. OBJECTIVE: We compared the incidence of prolonged cytopenias after immune effector therapy including genetically modified T-cells, virus-specific T-cells (VSTs) and NKT-cells, as well non-gene-modified VSTs for leukemia, lymphoma, and solid tumors (ST) to identify associated risk factors. METHODS: A retrospective analysis was conducted of 112 pediatric and adult patients with relapsed and/or refractory cancers who received lymphodepleting chemotherapy followed by immune effector therapy. Patients treated with 13 distinct immune effector cell therapies through 11 single-center clinical trials and 2 commercial products over a 6-year period were categorized into 3 types of malignancies: leukemia, lymphoma and ST. We obtained baseline patient characteristics and adverse events data for each participant, and tracked neutrophil and platelet counts following lymphodepletion. RESULTS: Of 112 patients, 104 (92.9%) experienced cytopenias and 88 (79%) experienced severe cytopenias. Patients with leukemia experienced significantly longer durations of severe neutropenia (median duration of 14 days) compared with patients with lymphoma (7 days) or ST (11 days) (P = 0.002). Patients with leukemia also had a higher incidence of severe thrombocytopenia (74.1%), compared with lymphoma (46%, P = 0.03) and ST (14.3%, P < 0.0001). Prolonged cytopenias were significantly associated with disease type (63% of patients with leukemia, 44% of patients with lymphoma, and 22.9% of patients with ST, P = 0.006), prior hematopoietic stem cell transplant (HSCT) (66.7% with prior HSCT versus 38.3% without prior HSCT, P = 0.039), and development of immune effector cell-associated neurotoxicity syndrome (ICANS) (75% with ICANS versus 38% without ICANS, P = 0.027). There was no significant association between prolonged cytopenias and cytokine release syndrome. CONCLUSIONS: Immune effector recipients often experience significant cytopenias due to marrow suppression following lymphodepletion regardless of disease, but prolonged severe cytopenias are significantly less common after treatment of patients with lymphoma and solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia , Linfoma , Humanos , Masculino , Femenino , Adulto , Leucemia/terapia , Leucemia/inmunología , Leucemia/complicaciones , Niño , Persona de Mediana Edad , Linfoma/terapia , Linfoma/inmunología , Linfoma/complicaciones , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Adolescente , Trombocitopenia/terapia , Trombocitopenia/etiología , Trombocitopenia/inmunología , Estudios Retrospectivos , Anciano , Neutropenia/inmunología , Neutropenia/etiología , Neutropenia/terapia , Preescolar , Depleción Linfocítica , Adulto Joven , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Citopenia
16.
Environ Res ; 252(Pt 3): 118913, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643821

RESUMEN

Exposome studies are advancing in high-income countries to understand how multiple environmental exposures impact health. However, there is a significant research gap in low- and middle-income and tropical countries. We aimed to describe the spatiotemporal variation of the external exposome, its correlation structure between and within exposure groups, and its dimensionality. A one-year follow-up cohort study of 506 children under 5 in two cities in Colombia was conducted to evaluate asthma, acute respiratory infections, and DNA damage. We examined 48 environmental exposures during pregnancy and 168 during childhood in eight exposure groups, including atmospheric pollutants, natural spaces, meteorology, built environment, traffic, indoor exposure, and socioeconomic capital. The exposome was estimated using geographic information systems, remote sensing, spatiotemporal modeling, and questionnaires. The median age of children at study entry was 3.7 years (interquartile range: 2.9-4.3). Air pollution and natural spaces exposure decreased from pregnancy to childhood, while socioeconomic capital increased. The highest median correlations within exposure groups were observed in meteorology (r = 0.85), traffic (r = 0.83), and atmospheric pollutants (r = 0.64). Important correlations between variables from different exposure groups were found, such as atmospheric pollutants and meteorology (r = 0.76), natural spaces (r = -0.34), and the built environment (r = 0.53). Twenty principal components explained 70%, and 57 explained 95% of the total variance in the childhood exposome. Our findings show that there is an important spatiotemporal variation in the exposome of children under 5. This is the first characterization of the external exposome in urban areas of Latin America and highlights its complexity, but also the need to better characterize and understand the exposome in order to optimize its analysis and applications in local interventions aimed at improving the health conditions and well-being of the child population and contributing to environmental health decision-making.


Asunto(s)
Exposición a Riesgos Ambientales , Exposoma , Humanos , Colombia/epidemiología , Preescolar , Femenino , Exposición a Riesgos Ambientales/análisis , Masculino , Contaminantes Atmosféricos/análisis , Embarazo , Contaminación del Aire/análisis , Estudios de Cohortes
17.
Res Sq ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645165

RESUMEN

Interleukin-15 (IL15) promotes the survival of T lymphocytes and enhances the antitumor properties of CAR T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy1-4. Glypican-3 (GPC3) is expressed in a group of solid cancers5-10, and here we report the first evaluation in humans of the effects of IL15 co-expression on GPC3-CAR T cells. Cohort 1 patients (NCT02905188/NCT02932956) received GPC3-CAR T cells, which were safe but produced no objective antitumor responses and reached peak expansion at two weeks. Cohort 2 patients (NCT05103631/NCT04377932) received GPC3-CAR T cells that co-expressed IL15 (15.CAR), which mediated significantly increased cell expansion and induced a disease control rate of 66% and antitumor response rate of 33%. Infusion of 15.CAR T cells was associated with increased incidence of cytokine release syndrome, which was rapidly ameliorated by activation of the inducible caspase 9 safety switch. Compared to non-responders, tumor-infiltrating 15.CAR T cells from responders showed repression of SWI/SNF epigenetic regulators and upregulation of FOS and JUN family members as well as genes related to type I interferon signaling. Collectively, these results demonstrate that IL15 increases the expansion, intratumoral survival, and antitumor activity of GPC3-CAR T cells in patients.

18.
Am J Clin Pathol ; 162(3): 233-242, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38597584

RESUMEN

OBJECTIVES: Myeloproliferative neoplasm, unclassifiable (MPN-U, revised to MPN, not otherwise specified in the fifth edition of the World Health Organization classification) is a heterogeneous category of primary marrow disorders with clinical, morphologic, and/or molecular features that preclude classification as a more specific MPN subtype due to stage at diagnosis, overlapping features between MPN subtypes, or the presence of coexisting disorders. Compared with other MPN subtypes, the contribution of the mutational landscape in MPN-U in conjunction with other clinical and morphologic biomarkers to prognosis has been less well investigated. METHODS: We performed a multicenter, retrospective study of MPN-U (94 cases) to better define the clinicopathologic features, genetic landscape, and clinical outcomes, including subgroups of early-stage, advanced-stage, and coexisting disorders. The Dynamic International Prognostic Scoring System (DIPSS) plus scoring system was applied to assess its relevance to MPN-U prognosis. RESULTS: Multivariate analysis demonstrated bone marrow blast count and DIPSS plus score as statistically significant in predicting overall survival. Univariate analysis identified additional potential poor prognostic markers, including abnormal karyotype and absence of JAK2 mutation. Secondary mutations were frequent in the subset analyzed by next-generation sequencing (26/37 cases, 70.3%) with a borderline association between high molecular risk mutations and overall survival. CONCLUSIONS: This study, as one of the largest of MPN-U studies incorporating both clinicopathologic and molecular data, moves toward identification of biomarkers that better predict prognosis in this heterogeneous category.


Asunto(s)
Janus Quinasa 2 , Mutación , Trastornos Mieloproliferativos , Humanos , Masculino , Femenino , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Trastornos Mieloproliferativos/diagnóstico , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Adulto , Pronóstico , Janus Quinasa 2/genética , Anciano de 80 o más Años , Médula Ósea/patología , Adulto Joven , Adolescente
19.
ACS Appl Nano Mater ; 7(1): 279-291, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606282

RESUMEN

This study investigates the impact of post-synthesis oxidation on the performance of superparamagnetic iron oxide nanoparticles (SPIONs) in magnetic particle imaging (MPI), an emerging technology with applications in diagnostic imaging and theranostics. SPIONs synthesized from iron oleate were subjected to a post-synthesis oxidation treatment with a 1% Oxygen in Argon mixture. MPI performance, gauged via signal intensity and resolution using a MOMENTUM™ scanner, was correlated to the nanoparticles' physical and magnetic properties. Post-synthesis oxidation did not alter physical attributes like size and shape, but significantly enhanced magnetic properties. Saturation magnetization increased from 52% to 93% of the bulk value for magnetite, leading to better MPI performance in terms of signal intensity and resolution. However, the observed MPI performance did not fully align with predictions based on the ideal Langevin model, indicating the need for considering factors like relaxation and shape anisotropy. The findings underscore the potential of post-synthesis oxidation as a method to fine-tune magnetic properties of SPIONs and improve MPI performance, and the need for reproducible synthesis methods that afford finely tuned control of nanoparticle size, shape, and magnetic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA