Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(50): 43062-70, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22027830

RESUMEN

Gastric inhibitory peptide (GIP) is an incretin hormone secreted in response to food intake. The best known function of GIP is to enhance glucose-dependent insulin secretion from pancreatic ß-cells. Extra-pancreatic effects of GIP primarily occur in adipose tissues. Here, we demonstrate that GIP increases insulin-dependent translocation of the Glut4 glucose transporter to the plasma membrane and exclusion of FoxO1 transcription factor from the nucleus in adipocytes, establishing that GIP has a general effect on insulin action in adipocytes. Stimulation of adipocytes with GIP alone has no effect on these processes. Using pharmacologic and molecular genetic approaches, we show that the effect of GIP on adipocyte insulin sensitivity requires activation of both the cAMP/protein kinase A/CREB signaling module and p110ß phosphoinositol-3' kinase, establishing a novel signal transduction pathway modulating insulin action in adipocytes. This insulin-sensitizing effect is specific for GIP because isoproterenol, which elevates adipocyte cAMP and activates PKA/CREB signaling, does not affect adipocyte insulin sensitivity. The insulin-sensitizing activity points to a more central role for GIP in intestinal regulation of peripheral tissue metabolism, an emerging feature of inter-organ communication in the control of metabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , AMP Cíclico/metabolismo , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Inmunoprecipitación , Resistencia a la Insulina , Ratones , Receptor de Insulina/metabolismo
2.
Biochemistry ; 50(32): 6763-73, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21688771

RESUMEN

The role of the extracellular loop region of a short-wavelength sensitive pigment, Xenopus violet cone opsin, is investigated via computational modeling, mutagenesis, and spectroscopy. The computational models predict a complex H-bonding network that stabilizes and connects the EC2-EC3 loop and the N-terminus. Mutations that are predicted to disrupt the H-bonding network are shown to produce visual pigments that do not stably bind chromophore and exhibit properties of a misfolded protein. The potential role of a disulfide bond between two conserved Cys residues, Cys(105) in TM3 and Cys(182) in EC2, is necessary for proper folding and trafficking in VCOP. Lastly, certain residues in the EC2 loop are predicted to stabilize the formation of two antiparallel ß-strands joined by a hairpin turn, which interact with the chromophore via H-bonding or van der Waals interactions. Mutations of conserved residues result in a decrease in the level of chromophore binding. These results demonstrate that the extracellular loops are crucial for the formation of this cone visual pigment. Moreover, there are significant differences in the structure and function of this region in VCOP compared to that in rhodopsin.


Asunto(s)
Secuencia Conservada , Pigmentos Retinianos/química , Secuencia de Aminoácidos , Disulfuros/química , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pigmentos Retinianos/genética , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta
3.
J Am Chem Soc ; 133(9): 2808-11, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21319741

RESUMEN

Assignment of the protonation state of the residue Glu-181 is important to our understanding of the primary event, activation processes and wavelength selection in rhodopsin. Despite extensive study, there is no general agreement on the protonation state of this residue in the literature. Electronic assignment is complicated by the location of Glu-181 near the nodal point in the electrostatic charge shift that accompanies excitation of the chromophore into the low-lying, strongly allowed ππ* state. Thus, the charge on this residue is effectively hidden from electronic spectroscopy. This situation is resolved in bathorhodopsin, because photoisomerization of the chromophore places Glu-181 well within the region of negative charge shift following excitation. We demonstrate that Glu-181 is negatively charged in bathorhodopsin on the basis of the shift in the batho absorption maxima at 10 K [λ(max) band (native) = 544 ± 2 nm, λ(max) band (E181Q) = 556 ± 3 nm] and the decrease in the λ(max) band oscillator strength (0.069 ± 0.004) of E181Q relative to that of the native protein. Because the primary event in rhodopsin does not include a proton translocation or disruption of the hydrogen-bonding network within the binding pocket, we may conclude that the Glu-181 residue in rhodopsin is also charged.


Asunto(s)
Ácido Glutámico/química , Rodopsina/química , Animales , Bovinos , Modelos Moleculares , Fotoquímica , Electricidad Estática
4.
J Gen Physiol ; 132(3): 329-38, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18695009

RESUMEN

In beta cells, both glucose and hormones, such as GLP-1, stimulate production of the second messenger cAMP, but glucose and GLP-1 elicit distinct cellular responses. We now show in INS-1E insulinoma cells that glucose and GLP-1 produce cAMP with distinct kinetics via different adenylyl cyclases. GLP-1 induces a rapid cAMP signal mediated by G protein-responsive transmembrane adenylyl cyclases (tmAC). In contrast, glucose elicits a delayed cAMP rise mediated by bicarbonate, calcium, and ATP-sensitive soluble adenylyl cyclase (sAC). This glucose-induced, sAC-dependent cAMP rise is dependent upon calcium influx and is responsible for the glucose-induced activation of the mitogen-activated protein kinase (ERK1/2) pathway. These results demonstrate that sAC-generated and tmAC-generated cAMP define distinct signaling cascades.


Asunto(s)
Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Péptido 1 Similar al Glucagón/administración & dosificación , Glucosa/administración & dosificación , Insulinoma/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos
5.
Biochemistry ; 47(16): 4614-20, 2008 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-18370404

RESUMEN

Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11- cis-retinal) or A2 (11- cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6- s- trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6- s- cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6- s- trans geometry red shifts M/LWS A1 pigments by approximately 1500 cm (-1) ( approximately 50 nm) and A2 pigments by approximately 2700 cm (-1) ( approximately 100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6- s- trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6- s- trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites.


Asunto(s)
Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Células Fotorreceptoras Retinianas Conos/química , Células Fotorreceptoras Retinianas Conos/metabolismo , Animales , Sitios de Unión , Color , Humanos , Modelos Biológicos , Modelos Moleculares , Filogenia , Rodopsina/química , Rodopsina/metabolismo , Espectrofotometría , Electricidad Estática
6.
Biochemistry ; 46(18): 5330-40, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17439245

RESUMEN

Xenopus violet cone opsin (VCOP) and its counterion variant (VCOP-D108A) are expressed in mammalian COS1 cells and regenerated with 11-cis-retinal. The phototransduction process in VCOP-D108A is investigated via cryogenic electronic spectroscopy, homology modeling, molecular dynamics, and molecular orbital theory. The VCOP-D108A variant is a UV-like pigment that displays less efficient photoactivation than the mouse short wavelength sensitive visual pigment (MUV) and photobleaching properties that are significantly different. Theoretical calculations trace the difference to the protonation state of the nearby glutamic acid residue E176, which is the homology equivalent of E181 in rhodopsin. We find that E176 is negatively charged in MUV but neutral (protonated) in VCOP-D108A. In the dark state, VCOP-D108A has an unprotonated Schiff base (SB) chromophore (lambdamax = 357 nm). Photolysis of VCOP-D108A at 70 K generates a bathochromic photostationary state (lambdamax = 380 nm). We identify two lumi intermediates, wherein the transitions from batho to the lumi intermediates are temperature- and pH-dependent. The batho intermediate decays to a more red-shifted intermediate called lumi I. The SB becomes protonated during the lumi I to lumi II transition. Decay of lumi II forms meta I, followed by the formation of meta II. We conclude that even in the absence of a primary counterion in VCOP-D108A, the SB becomes protonated during the photoactivation cascade. We examine the relevance of this observation to the counterion switch mechanism of visual pigment activation.


Asunto(s)
Protones , Células Fotorreceptoras Retinianas Conos/metabolismo , Pigmentos Retinianos/metabolismo , Retinoides/metabolismo , Opsinas de Bastones/metabolismo , Visión Ocular , Sustitución de Aminoácidos/genética , Animales , Ácido Aspártico/genética , Células COS , Chlorocebus aethiops , Ratones , Mutagénesis Sitio-Dirigida , Células Fotorreceptoras Retinianas Conos/química , Pigmentos Retinianos/química , Pigmentos Retinianos/genética , Retinoides/química , Retinoides/genética , Opsinas de Bastones/genética , Opsinas de Bastones/aislamiento & purificación , Bases de Schiff/química , Bases de Schiff/metabolismo , Espectrofotometría Ultravioleta , Homología Estructural de Proteína , Visión Ocular/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA