Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38853946

RESUMEN

Greater perceived physical fatigability and lower skeletal muscle energetics are predictors of mobility decline. Characterizing associations between muscle energetics and perceived fatigability may provide insight into potential targets to prevent mobility decline. We examined associations of in vivo (maximal ATP production, ATPmax) and ex vivo (maximal carbohydrate supported oxidative phosphorylation [max OXPHOS] and maximal fatty acid supported OXPHOS [max FAO OXPHOS]) measures of mitochondrial energetics with two measures of perceived physical fatigability, Pittsburgh Fatigability Scale (PFS, 0-50, higher=greater) and Rating of Perceived Exertion (RPE Fatigability, 6-20, higher=greater) after a slow treadmill walk. Participants from the Study of Muscle, Mobility and Aging (N=873) were 76.3±5.0 years old, 59.2% women, and 85.3% White. Higher muscle energetics (both in vivo and ex vivo ) were associated with lower perceived physical fatigability, all p<0.03. When stratified by sex, higher ATPmax was associated with lower PFS Physical for men only; higher max OXPHOS and max FAO OXPHOS were associated with lower RPE fatigability for both sexes. Higher skeletal muscle energetics were associated with 40-55% lower odds of being in the most (PFS≥25, RPE Fatigability≥12) vs least (PFS 0-4, RPE Fatigability 6-7) severe fatigability strata, all p<0.03. Being a woman was associated with 2-3 times higher odds of being in the most severe fatigability strata when controlling for ATPmax but not the in vivo measures (p<0.05). Better mitochondrial energetics were linked to lower fatigability and less severe fatigability in older adults. Findings imply that improving skeletal muscle energetics may mitigate perceived physical fatigability and prolong healthy aging.

2.
Obesity (Silver Spring) ; 32(6): 1125-1135, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38803308

RESUMEN

OBJECTIVE: The aim of this study was to examine associations of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. METHODS: Cross-sectional data from 829 adults ≥70 years of age were used. Abdominal, subcutaneous, and visceral AT and thigh muscle fat infiltration (MFI) were quantified by magnetic resonance imaging. SM mitochondrial energetics were characterized in vivo (31P-magnetic resonance spectroscopy; ATPmax) and ex vivo (high-resolution respirometry maximal oxidative phosphorylation [OXPHOS]). ActivPal was used to measure physical activity ([PA]; step count). Linear regression adjusted for covariates was applied, with sequential adjustment for BMI and PA. RESULTS: Independent of BMI, total abdominal AT (standardized [Std.] ß = -0.21; R2 = 0.09) and visceral AT (Std. ß = -0.16; R2 = 0.09) were associated with ATPmax (p < 0.01; n = 770) but not following adjustment for PA (p ≥ 0.05; n = 658). Visceral AT (Std. ß = -0.16; R2 = 0.25) and thigh MFI (Std. ß = -0.11; R2 = 0.24) were associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 609). Total abdominal AT (Std. ß = -0.19; R2 = 0.24) and visceral AT (Std. ß = -0.17; R2 = 0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 447). CONCLUSIONS: Skeletal MFI and abdominal visceral, but not subcutaneous, AT are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.


Asunto(s)
Índice de Masa Corporal , Metabolismo Energético , Músculo Esquelético , Humanos , Femenino , Anciano , Masculino , Metabolismo Energético/fisiología , Estudios Transversales , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Imagen por Resonancia Magnética , Tejido Adiposo/metabolismo , Distribución de la Grasa Corporal , Mitocondrias Musculares/metabolismo , Grasa Intraabdominal/metabolismo , Anciano de 80 o más Años
3.
Artículo en Inglés | MEDLINE | ID: mdl-38605684

RESUMEN

BACKGROUND: The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age = 76.4, 56.5% women, and 85.9% non-Hispanic White) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95% CI]) for the likelihood of greater multimorbidity (4 levels: 0 conditions, N = 332; 1 condition, N = 299; 2 conditions, N = 98; or 3+ conditions, N = 35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. RESULTS: Lower oxidative phosphorylation supported by fatty acids and/or complex I- and II-linked carbohydrates (eg, Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR = 1.32 [1.13, 1.54]) and separately with diabetes mellitus (OR = 1.62 [1.26, 2.09]), depressive symptoms (OR = 1.45 [1.04, 2.00]) and possibly chronic kidney disease (OR = 1.57 [0.98, 2.52]) but not significantly with other conditions (eg, cardiac arrhythmia, chronic obstructive pulmonary disease). CONCLUSIONS: Lower muscle mitochondrial bioenergetic capacities were associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and are more strongly related to some conditions than others.


Asunto(s)
Envejecimiento , Metabolismo Energético , Mitocondrias Musculares , Multimorbilidad , Humanos , Femenino , Anciano , Masculino , Metabolismo Energético/fisiología , Mitocondrias Musculares/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Anciano de 80 o más Años , Músculo Esquelético/metabolismo
4.
Diabetes ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551899

RESUMEN

Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults. The impact of cardiorespiratory fitness and mitochondrial oxidative capacity on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes as well as determine their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n=159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles when compared to those without diabetes (n=717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. 4-m and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walk speed between older adults with and without diabetes. Additional adjustments with BMI and co-morbidities further explained the group differences in walk speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes.

5.
Geroscience ; 46(2): 2409-2424, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37987886

RESUMEN

BACKGROUND: Phenotypic frailty syndrome identifies older adults at greater risk for adverse health outcomes. Despite the critical role of mitochondria in maintaining cellular function, including energy production, the associations between muscle mitochondrial energetics and frailty have not been widely explored in a large, well-phenotyped, older population. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed muscle energetics in older adults (N = 879, mean age = 76.3 years, 59.2% women). 31Phosporous magnetic resonance spectroscopy measured maximal production of adenosine triphosphate (ATPmax) in vivo, while ex vivo high-resolution respirometry of permeabilized muscle fibers from the vastus lateralis measured maximal oxygen consumption supported by fatty acids and complex I- and II-linked carbohydrates (e.g., Max OXPHOSCI+CII). Five frailty criteria, shrinking, weakness, exhaustion, slowness, and low activity, were used to classify participants as robust (0, N = 397), intermediate (1-2, N = 410), or frail (≥ 3, N = 66). We estimated the proportional odds ratio (POR) for greater frailty, adjusted for multiple potential confounders. RESULTS: One-SD decrements of most respirometry measures (e.g., Max OXPHOSCI+CII, adjusted POR = 1.5, 95%CI [1.2,1.8], p = 0.0001) were significantly associated with greater frailty classification. The associations of ATPmax with frailty were weaker than those between Max OXPHOSCI+CII and frailty. Muscle energetics was most strongly associated with slowness and low physical activity components. CONCLUSIONS: Our data suggest that deficits in muscle mitochondrial energetics may be a biological driver of frailty in older adults. On the other hand, we did observe differential relationships between measures of muscle mitochondrial energetics and the individual components of frailty.


Asunto(s)
Fragilidad , Masculino , Anciano , Humanos , Femenino , Anciano Frágil , Músculos , Envejecimiento , Mitocondrias , Adenosina Trifosfato
6.
Artículo en Inglés | MEDLINE | ID: mdl-38150179

RESUMEN

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery (SPPB) score ≤8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (eg, Maximal Complex I&II OXPHOS: Women = 55.06 ± 15.95; Men = 65.80 ± 19.74; p < .001) and in individuals with mobility impairment compared to those without (eg, Maximal Complex I&II OXPHOS in women: SPPB ≥ 9 = 56.59 ± 16.22; SPPB ≤ 8 = 47.37 ± 11.85; p < .001). Muscle energetics were negatively associated with age only in men (eg, Maximal ETS capacity: R = -0.15, p = .02; age/sex interaction, p = .04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, odds ratio [OR]age-adjusted = 1.78, 95% confidence interval [CI] = 1.03, 3.08, p = .038; 80+ age group, ORage-adjusted = 1.05, 95% CI = 0.52, 2.15, p = .89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.


Asunto(s)
Envejecimiento , Músculo Esquelético , Masculino , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Músculo Cuádriceps , Extremidad Inferior
7.
medRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986814

RESUMEN

Rationale: Cardiorespiratory fitness and mitochondrial energetics are associated with reduced walking speed in older adults. The impact of cardiorespiratory fitness and mitochondrial energetics on walking speed in older adults with diabetes has not been clearly defined. Objective: To examine differences in cardiorespiratory fitness and skeletal muscle mitochondrial energetics between older adults with and without diabetes. We also assessed the contribution of cardiorespiratory fitness and skeletal muscle mitochondrial energetics to slower walking speed in older adults with diabetes. Findings: Participants with diabetes had lower cardiorespiratory fitness and mitochondrial energetics when compared to those without diabetes, following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. 4-m and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walk speed between older adults with and without diabetes. Further adjustments of BMI and co-morbidities further explained the group differences in walk speed. Conclusions: Skeletal muscle mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speeds in older adults with diabetes. Cardiorespiratory fitness and mitochondrial energetics may be therapeutic targets to maintain or improve mobility in older adults with diabetes. ARTICLE HIGHLIGHTS: Why did we undertake this study? To determine if mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speed in older adults with diabetes. What is the specific question(s) we wanted to answer? Are mitochondrial energetics and cardiorespiratory fitness in older adults with diabetes lower than those without diabetes? How does mitochondrial energetics and cardiorespiratory fitness impact walking speed in older adults with diabetes? What did we find? Mitochondrial energetics and cardiorespiratory fitness were lower in older adults with diabetes compared to those without diabetes, and energetics, and cardiorespiratory fitness, contributed to slower walking speed in those with diabetes. What are the implications of our findings? Cardiorespiratory fitness and mitochondrial energetics may be key therapeutic targets to maintain or improve mobility in older adults with diabetes.

8.
medRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986822

RESUMEN

Objective: Examine the association of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. Methods: Cross-sectional data from 829 older adults ≥70 years was used. Total abdominal, subcutaneous, and visceral AT; and thigh muscle fat infiltration (MFI) was quantified by MRI. SM mitochondrial energetics were characterized using in vivo 31 P-MRS (ATP max ) and ex vivo high-resolution respirometry (maximal oxidative phosphorylation (OXPHOS)). ActivPal was used to measure PA (step count). Linear regression models adjusted for covariates were applied, with sequential adjustment for BMI and PA. Results: Independent of BMI, total abdominal (standardized (Std.) ß=-0.21; R 2 =0.09) and visceral AT (Std. ß=-0.16; R 2 =0.09) were associated with ATP max ( p <0.01), but not after further adjustment for PA (p≥0.05). Visceral AT (Std. ß=-0.16; R 2 =0.25) and thigh MFI (Std. ß=-0.11; R 2 =0.24) were negatively associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA ( p <0.05). Total abdominal AT (Std. ß=-0.19; R 2 =0.24) and visceral AT (Std. ß=-0.17; R 2 =0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p<0.05). Conclusions: Skeletal MFI and abdominal visceral, but not subcutaneous AT, are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.

9.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37987007

RESUMEN

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery score ≤ 8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (e.g. Maximal Complex I&II OXPHOS: Women=55.06 +/- 15.95; Men=65.80 +/- 19.74; p<0.001) and in individuals with mobility impairment compared to those without (e.g., Maximal Complex I&II OXPHOS in women: SPPB≥9=56.59 +/- 16.22; SPPB≤8=47.37 +/- 11.85; p<0.001). Muscle energetics were negatively associated with age only in men (e.g., Maximal ETS capacity: R=-0.15, p=0.02; age/sex interaction, p=0.04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, OR age-adjusted =1.78, 95% CI=1.03, 3.08, p=0.038; 80+ age group, OR age-adjusted =1.05, 95% CI=0.52, 2.15, p=0.89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.

10.
J Gerontol A Biol Sci Med Sci ; 78(8): 1367-1375, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462195

RESUMEN

BACKGROUND: Mitochondrial energetics are an important property of aging muscle, as generation of energy is pivotal to the execution of muscle contraction. However, its association with functional outcomes, including leg power and cardiorespiratory fitness, is largely understudied. METHODS: In the Study of Muscle, Mobility, and Aging, we collected vastus lateralis biopsies from older adults (n = 879, 70-94 years, 59.2% women). Maximal State 3 respiration (Max OXPHOS) was assessed in permeabilized fiber bundles by high-resolution respirometry. Capacity for maximal adenosine triphosphate production (ATPmax) was measured in vivo by 31P magnetic resonance spectroscopy. Leg extension power was measured with a Keiser press system, and VO2 peak was determined using a standardized cardiopulmonary exercise test. Gender-stratified multivariate linear regression models were adjusted for age, race, technician/site, adiposity, and physical activity with beta coefficients expressed per 1-SD increment in the independent variable. RESULTS: Max OXPHOS was associated with leg power for both women (ß = 0.12 Watts/kg, p < .001) and men (ß = 0.11 Watts/kg, p < .050). ATPmax was associated with leg power for men (ß = 0.09 Watts/kg, p < .05) but was not significant for women (ß = 0.03 Watts/kg, p = .11). Max OXPHOS and ATPmax were associated with VO2 peak in women and men (Max OXPHOS, ß women = 1.03 mL/kg/min, ß men = 1.32 mL/kg/min; ATPmax ß women = 0.87 mL/kg/min, ß men = 1.50 mL/kg/min; all p < .001). CONCLUSIONS: Higher muscle mitochondrial energetics measures were associated with both better cardiorespiratory fitness and greater leg power in older adults. Muscle mitochondrial energetics explained a greater degree of variance in VO2 peak compared to leg power.


Asunto(s)
Capacidad Cardiovascular , Masculino , Humanos , Femenino , Anciano , Capacidad Cardiovascular/fisiología , Pierna , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/fisiología , Consumo de Oxígeno/fisiología
11.
Compr Physiol ; 12(2): 3193-3279, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35578962

RESUMEN

For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.


Asunto(s)
Adaptación Fisiológica , Ejercicio Físico , Ejercicio Físico/fisiología , Humanos
12.
PLoS One ; 15(10): e0237138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002037

RESUMEN

In Duchenne muscular dystrophy, a lack of dystrophin leads to extensive muscle weakness and atrophy that is linked to cellular metabolic dysfunction and oxidative stress. This dystrophinopathy results in a loss of tethering between microtubules and the sarcolemma. Microtubules are also believed to regulate mitochondrial bioenergetics potentially by binding the outer mitochondrial membrane voltage dependent anion channel (VDAC) and influencing permeability to ADP/ATP cycling. The objective of this investigation was to determine if a lack of dystrophin causes microtubule disorganization concurrent with mitochondrial dysfunction in skeletal muscle, and whether this relationship is linked to altered binding of tubulin to VDAC. In extensor digitorum longus (EDL) muscle from 4-week old D2.mdx mice, microtubule disorganization was observed when probing for α-tubulin. This cytoskeletal disorder was associated with a reduced ability of ADP to stimulate respiration and attenuate H2O2 emission relative to wildtype controls. However, this was not associated with altered α-tubulin-VDAC2 interactions. These findings reveal that microtubule disorganization in dystrophin-deficient EDL is associated with impaired ADP control of mitochondrial bioenergetics, and suggests that mechanisms alternative to α-tubulin's regulation of VDAC2 should be examined to understand how cytoskeletal disruption in the absence of dystrophin may cause metabolic dysfunctions in skeletal muscle.


Asunto(s)
Distrofina/metabolismo , Mitocondrias , Músculo Esquelético , Distrofia Muscular de Duchenne/metabolismo , Tubulina (Proteína)/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Metabolismo Energético , Ratones , Ratones Endogámicos mdx , Microtúbulos/metabolismo , Microtúbulos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
13.
14.
J Physiol ; 598(7): 1377-1392, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30674086

RESUMEN

KEY POINTS: Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT: In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.


Asunto(s)
Cardiopatías , Distrofia Muscular de Duchenne , Animales , Metabolismo Energético , Cardiopatías/metabolismo , Ventrículos Cardíacos , Humanos , Ratones , Ratones Endogámicos mdx , Mitocondrias/metabolismo , Distrofia Muscular de Duchenne/metabolismo
15.
Am J Physiol Endocrinol Metab ; 318(1): E44-E51, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794260

RESUMEN

Sexual dimorphism in mitochondrial respiratory function has been reported in young women and men without diabetes, which may have important implications for exercise. The purpose of this study was to determine if sexual dimorphism exists in skeletal muscle mitochondrial bioenergetics in people with type 1 diabetes (T1D). A resting muscle microbiopsy was obtained from women and men with T1D (n = 10/8, respectively) and without T1D (control; n = 8/7, respectively). High-resolution respirometry and spectrofluorometry were used to measure mitochondrial respiratory function, hydrogen peroxide (mH2O2) emission and calcium retention capacity (mCRC) in permeabilized myofiber bundles. The impact of T1D on mitochondrial bioenergetics between sexes was interrogated by comparing the change between women and men with T1D relative to the average values of their respective sex-matched controls (i.e., delta). These aforementioned analyses revealed that men with T1D have increased skeletal muscle mitochondrial complex I sensitivity but reduced complex II sensitivity and capacity in comparison to women with T1D. mH2O2 emission was lower in women compared with men with T1D at the level of complex I (succinate driven), whereas mCRC and mitochondrial protein content remained similar between sexes. In conclusion, women and men with T1D exhibit differential responses in skeletal muscle mitochondrial bioenergetics. Although larger cohort studies are certainly required, these early findings nonetheless highlight the importance of considering sex as a variable in the care and treatment of people with T1D (e.g., benefits of different exercise prescriptions).


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Adulto , Calcio/metabolismo , Estudios de Casos y Controles , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Caracteres Sexuales , Factores Sexuales , Adulto Joven
16.
J Cachexia Sarcopenia Muscle ; 10(3): 643-661, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30938481

RESUMEN

BACKGROUND: Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS: Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS: Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS: These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/citología , Distrofia Muscular de Duchenne/genética , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo
17.
Am J Physiol Cell Physiol ; 316(3): C449-C455, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624982

RESUMEN

Microtubule-targeting chemotherapies are linked to impaired cellular metabolism, which may contribute to skeletal muscle dysfunction. However, the mechanisms by which metabolic homeostasis is perturbed remains unknown. Tubulin, the fundamental unit of microtubules, has been implicated in the regulation of mitochondrial-cytosolic ADP/ATP exchange through its interaction with the outer membrane voltage-dependent anion channel (VDAC). Based on this model, we predicted that disrupting microtubule architecture with the stabilizer paclitaxel and destabilizer vinblastine would impair skeletal muscle mitochondrial bioenergetics. Here, we provide in vitro evidence of a direct interaction between both α-tubulin and ßII-tubulin with VDAC2 in untreated single extensor digitorum longus (EDL) fibers. Paclitaxel increased both α- and ßII-tubulin-VDAC2 interactions, whereas vinblastine had no effect. Utilizing a permeabilized muscle fiber bundle preparation that retains the cytoskeleton, paclitaxel treatment impaired the ability of ADP to attenuate H2O2 emission, resulting in greater H2O2 emission kinetics. Despite no effect on tubulin-VDAC2 binding, vinblastine still altered mitochondrial bioenergetics through a surprising increase in ADP-stimulated respiration while also impairing ADP suppression of H2O2 and increasing mitochondrial susceptibility to calcium-induced formation of the proapoptotic permeability transition pore. Collectively, these results demonstrate that altering microtubule architecture with chemotherapeutics disrupts mitochondrial bioenergetics in EDL skeletal muscle. Specifically, microtubule stabilization increases H2O2 emission by impairing ADP sensitivity in association with greater tubulin-VDAC binding. In contrast, decreasing microtubule abundance triggers a broad impairment of ADP's governance of respiration and H2O2 emission as well as calcium retention capacity, albeit through an unknown mechanism.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Paclitaxel/farmacología , Vinblastina/farmacología , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Femenino , Peróxido de Hidrógeno/farmacología , Cinética , Masculino , Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Permeabilidad/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Tubulina (Proteína)/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
18.
Elife ; 72018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30511639

RESUMEN

Impaired angiogenesis is a hallmark of metabolically dysfunctional adipose tissue in obesity. However, the underlying mechanisms restricting angiogenesis within this context remain ill-defined. Here, we demonstrate that induced endothelial-specific depletion of the transcription factor Forkhead Box O1 (FoxO1) in male mice led to increased vascular density in adipose tissue. Upon high-fat diet feeding, endothelial cell FoxO1-deficient mice exhibited even greater vascular remodeling in the visceral adipose depot, which was paralleled with a healthier adipose tissue expansion, higher glucose tolerance and lower fasting glycemia concomitant with enhanced lactate levels. Mechanistically, FoxO1 depletion increased endothelial proliferative and glycolytic capacities by upregulating the expression of glycolytic markers, which may account for the improvements at the tissue level ultimately impacting whole-body glucose metabolism. Altogether, these findings reveal the pivotal role of FoxO1 in controlling endothelial metabolic and angiogenic adaptations in response to high-fat diet and a contribution of the endothelium to whole-body energy homeostasis.


Asunto(s)
Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Proteína Forkhead Box O1/deficiencia , Obesidad/metabolismo , Animales , Dieta Alta en Grasa , Proteína Forkhead Box O1/metabolismo , Glucosa/metabolismo , Glucólisis , Homeostasis , Grasa Intraabdominal/irrigación sanguínea , Grasa Intraabdominal/metabolismo , Masculino , Ratones Noqueados , Microvasos/metabolismo , Modelos Biológicos , Músculo Esquelético/irrigación sanguínea , Obesidad/sangre , Tamaño de los Órganos , Especificidad de Órganos , Fenotipo , Triglicéridos/sangre , Regulación hacia Arriba , Remodelación Vascular
19.
Diabetologia ; 61(6): 1411-1423, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29666899

RESUMEN

AIMS/HYPOTHESIS: A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes. METHODS: Physically active, young adults (men and women) with type 1 diabetes (HbA1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H2O2 emission and Ca2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence. RESULTS: Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H2O2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKαThr172), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1Ser555) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups. CONCLUSIONS/INTERPRETATION: Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of active young adults with type 1 diabetes. It is yet to be elucidated whether more rigorous exercise may help to prevent skeletal muscle metabolic deficiencies in both active and inactive individuals with type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Adulto , Índice de Masa Corporal , Calcio/química , Diabetes Mellitus Tipo 1/patología , Metabolismo Energético , Ejercicio Físico/fisiología , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Insulina/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/ultraestructura , Músculo Esquelético/patología , Consumo de Oxígeno , Adulto Joven
20.
Proc Natl Acad Sci U S A ; 115(7): 1576-1581, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378951

RESUMEN

Lipocalin-2 (Lcn2), a critical component of the innate immune response which binds siderophores and limits bacterial iron acquisition, can elicit spillover adverse proinflammatory effects. Here we show that holo-Lcn2 (Lcn2-siderophore-iron, 1:3:1) increases mitochondrial reactive oxygen species (ROS) generation and attenuates mitochondrial oxidative phosphorylation in adult rat primary cardiomyocytes in a manner blocked by N-acetyl-cysteine or the mitochondria-specific antioxidant SkQ1. We further demonstrate using siderophores 2,3-DHBA (2,3-dihydroxybenzoic acid) and 2,5-DHBA that increased ROS and reduction in oxidative phosphorylation are direct effects of the siderophore component of holo-Lcn2 and not due to apo-Lcn2 alone. Extracellular apo-Lcn2 enhanced the potency of 2,3-DHBA and 2,5-DHBA to increase ROS production and decrease mitochondrial respiratory capacity, whereas intracellular apo-Lcn2 attenuated these effects. These actions of holo-Lcn2 required an intact plasma membrane and were decreased by inhibition of endocytosis. The hearts, but not serum, of Lcn2 knockout (LKO) mice contained lower levels of 2,5-DHBA compared with wild-type hearts. Furthermore, LKO mice were protected from ischemia/reperfusion-induced cardiac mitochondrial dysfunction. Our study identifies the siderophore moiety of holo-Lcn2 as a regulator of cardiomyocyte mitochondrial bioenergetics.


Asunto(s)
Lipocalina 2/fisiología , Mitocondrias/patología , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/patología , Sideróforos/metabolismo , Animales , Gentisatos/farmacología , Hidroxibenzoatos/farmacología , Hierro/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...