Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 437(1): 113965, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38378126

RESUMEN

Reactive oxygens species (ROS) are common byproducts of metabolic reactions and could be at the origin of many diseases of the elderly. Here we investigated the role of ROS in the renewal of the intestinal epithelium in mice lacking catalase (CAT) and/or nicotinamide nucleotide transhydrogenase (NNT) activities. Cat-/- mice have delayed intestinal epithelium renewal and were prone to develop necrotizing enterocolitis upon starvation. Interestingly, crypts lacking CAT showed fewer intestinal stem cells (ISC) and lower stem cell activity than wild-type. In contrast, crypts lacking NNT showed a similar number of ISCs as wild-type but increased stem cell activity, which was also impaired by the loss of CAT. No alteration in the number of Paneth cells (PCs) was observed in crypts of either Cat-/- or Nnt-/- mice, but they showed an evident decline in the amount of lysozyme. Cat deficiency caused fat accumulation in crypts, and a fall in the remarkable high amount of adipose triglyceride lipase (ATGL) in PCs. Notably, the low levels of ATGL in the intestine of Cat -/- mice increased after a treatment with the antioxidant N-acetyl-L-cysteine. Supporting a role of ATGL in the regulation of ISC activity, its inhibition halt intestinal organoid development. These data suggest that the reduction in the renewal capacity of intestine originates from fatty acid metabolic alterations caused by peroxisomal ROS.


Asunto(s)
Antioxidantes , Metabolismo de los Lípidos , Humanos , Ratones , Animales , Anciano , Metabolismo de los Lípidos/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mucosa Intestinal/metabolismo , Homeostasis
2.
Free Radic Biol Med ; 135: 102-115, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30818059

RESUMEN

The relationship between the mechanisms that underlie longevity and aging and the metabolic alterations due to feeding conditions has not been completely defined. In the present work, through the deletion of the gene encoding catalase, hydrogen peroxide (H2O2) was uncovered as a relevant regulator of longevity and of liver metabolism. Mice lacking catalase (Cat-/-) fed ad libitum with a regular diet showed a shorter lifespan than wild type mice, which correlated with reduced body weight, blood glucose levels and liver fat accumulation, but not with increased oxidative damage or consistent premature aging. High fat diet (HFD) and fasting increased oxidative damage in the liver of wild type animals but, unexpectedly, this was not the case for that of Cat-/- mice. Interestingly, although HFD feeding similarly increased the body weight of Cat-/- and wild-type mice, hyperglycemia and liver steatosis did not develop in the former. Fat accumulation due to fasting, on the other hand, was diminished in mice lacking catalase, which correlated with increased risk of death and low ketone body blood levels. Alteration in expression of some metabolic genes in livers of catalase deficient mice was consistent with reduced lipogenesis. Specifically, Pparγ2 expression up-regulation in response to a HFD and down-regulation upon fasting was lower and higher, respectively, in livers of Cat-/- than of wild type mice, and a marked decay was observed during Cat-/- mice aging. We propose that catalase regulates lipid metabolism in the liver by an evolutionary conserved mechanism that is determinant of lifespan without affecting general oxidative damage.


Asunto(s)
Catalasa/genética , Metabolismo de los Lípidos/genética , Longevidad/genética , PPAR gamma/genética , Acatalasia/genética , Acatalasia/metabolismo , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/patología , Animales , Dieta Alta en Grasa/efectos adversos , Hígado Graso/genética , Hígado Graso/patología , Humanos , Peróxido de Hidrógeno/metabolismo , Resistencia a la Insulina/genética , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/patología , Estrés Oxidativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...