Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomics ; 269(1): 78-89, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12715156

RESUMEN

Bleomycin is an antitumor drug that damages DNA via a free radical-dependent mechanism, and yeast mutants defective in DNA repair are hypersensitive to the drug. To identify possible pathways that may contribute to bleomycin resistance in yeast, we characterized a panel of bleomycin-sensitive mutants that were previously isolated by insertion mutagenesis using the transposon miniTn3::Leu2::LacZ::AMP( R). One of these mutants harbored a single insertion in the SLG1 gene, which encodes a cell membrane protein that senses cell wall stress, and functions to maintain cell wall function by activating the protein kinase C signaling pathway. Deletion of the SLG1 gene in parental strains caused hypersensitivity to bleomycin, and this correlated with an accumulation of damaged DNA. A plasmid that expresses the native SLG1 gene or that increases PKC1 gene dosage restored bleomycin resistance to the slg1Delta mutant. Two-dimensional gel electrophoresis revealed that exposure to bleomycin triggered the expression of certain proteins, presumably to maintain cell wall function, in a Slg1-dependent manner. In addition, mutants lacking cell wall function were found to be hypersensitive to bleomycin. We conclude that mutants deficient in proteins that maintain cell wall function are severely compromised in their ability to limit bleomycin entry into the cell. Therefore, these mutants are burdened with increased genotoxicity upon exposure to bleomycin in the medium. Our results show that major mechanisms other than DNA repair are operating in yeast to mediate bleomycin resistance.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Pared Celular/metabolismo , Farmacorresistencia Fúngica/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Pared Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Mutación , Saccharomyces cerevisiae/efectos de los fármacos
2.
Biochem Cell Biol ; 79(4): 441-8, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11527213

RESUMEN

Ycf1 and Acr3 are transporters that have been previously shown to protect Saccharomyces cerevisiae cells from the toxic effects of arsenite. Ycf1 and Acr3 are positively regulated by distinct, but related bZIP transcriptional activators, Yap1 and Yap8, respectively. In this study, we show that overexpression of Yap1 complemented the arsenite hypersensitivity of the ycf1 null mutant, but only if the ACR3 gene is functional. We further show that the expression of either an ACR3-lacZ promoter fusion reporter or the endogenous ACR3 gene was stimulated by the overproduction of Yap1 upon exposure to arsenite. These data suggest that Yap1 confers arsenite resistance to the ycf1 null mutant by activating expression of the Yap8-dependent target gene, ACR3. Our data also show Yap8-dependent ACR3-lacZ expression was greatly stimulated by arsenite in a dose-dependent manner in the parental strain. However, overproduction of Yap1 in the parental strain severely limited dose-dependent activation of the reporter by arsenite. We conclude that Yap1 may compete with Yap8 for binding to the ACR3 promoter, but is unable to act as a potent activator.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Arsenitos/farmacología , Proteínas de Unión al ADN/biosíntesis , Proteínas Fúngicas/genética , Regulación de la Expresión Génica/fisiología , Mutación , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/biosíntesis , Secuencia de Aminoácidos , Northern Blotting , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/fisiología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
3.
Mol Cell Biol ; 21(5): 1647-55, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11238901

RESUMEN

The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.


Asunto(s)
Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas Fúngicas/fisiología , Genoma Fúngico , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Pared Celular/química , Citoplasma/metabolismo , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN , Proteínas Fúngicas/genética , Glutatión Transferasa/metabolismo , Glicoproteínas , Proteínas Fluorescentes Verdes , Immunoblotting , Proteínas Luminiscentes/metabolismo , Metilmetanosulfonato , Datos de Secuencia Molecular , Mutágenos , Mutación , Plásmidos/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Fracciones Subcelulares , Factores de Tiempo , Técnicas del Sistema de Dos Híbridos
4.
Biochem Cell Biol ; 77(4): 375-82, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10546901

RESUMEN

Bleomycin is an antitumor drug that kills cells by introducing lesions in DNA. Thus, normal cells exposed to bleomycin must rely on efficient DNA repair mechanisms to survive. In the yeast Saccharomyces cerevisiae, the transcriptional activator Imp2 is required to fend off the toxic effects of bleomycin. However, it remains unclear whether Imp2 controls the expression of a protein that either repairs bleomycin-induced DNA lesions, or detoxifies the drug, and or both. To gain further insight into the mechanisms by which yeast cells mount a response towards bleomycin, we began to sequentially characterize the genetic defect in a collection of bleomycin-sensitive mutants that were previously isolated by mini-Tn3 transposon mutagenesis. A rescue plasmid designed to integrate at the site of the mini-Tn3 insertion was used to identify the defective gene in one of the mutant strains, HCY53, which was not allelic to IMP2. We showed that in strain HCY53, the mini-Tn3 was inserted at the distal end of an essential gene RPB7, which encodes one of the two subunits, Rpb4-Rbp7, that forms a subcomplex with RNA polymerase II. Since rpb7 null mutants are nonviable, it would appear that the rpb7::mini-Tn3 allele produces a protein that retains partial biological function thus permitting cell viability, but which is unable to provide bleomycin resistance to strain HCY53. The defective phenotype of strain HCY53 could be corrected by a plasmid bearing the entire RPB7 gene. Two dimensional gel analysis revealed that the expression of several proteins were diminished or absent in the rpb7::mini-Tn3 mutant when challenged with bleomycin. These results are in accord with our previous report that bleomycin resistance in yeast is controlled at the transcriptional level.


Asunto(s)
Alelos , Bleomicina/farmacología , Farmacorresistencia Microbiana/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/biosíntesis , Fenotipo , Saccharomyces cerevisiae/efectos de los fármacos , Transcripción Genética
5.
J Biol Chem ; 274(34): 24176-86, 1999 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-10446192

RESUMEN

Mammalian polynucleotide kinases catalyze the 5'-phosphorylation of nucleic acids and can have associated 3'-phosphatase activity, predictive of an important function in DNA repair following ionizing radiation or oxidative damage. The sequences of three tryptic peptides from a bovine 60-kDa polypeptide that correlated with 5'-DNA kinase and 3'-phosphatase activities identified human and murine dbEST clones. The 57.1-kDa conceptual translation product of this gene, polynucleotide kinase 3'-phosphatase (PNKP), contained a putative ATP binding site and a potential 3'-phosphatase domain with similarity to L-2-haloacid dehalogenases. BLAST searches identified possible homologs in Caenorhabditis elegans, Schizosaccharomyces pombe, and Drosophila melanogaster. The gene was localized to chromosome 19q13.3-13.4. Northern analysis indicated a 2-kilobase mRNA in eight human tissues. A glutathione S-transferase-PNKP fusion protein displayed 5'-DNA kinase and 3'-phosphatase activities. PNKP is the first gene for a DNA-specific kinase from any organism. PNKP expression partially rescued the sensitivity to oxidative damaging agents of the Escherichia coli DNA repair-deficient xth nfo double mutant. PNKP gene function restored termini suitable for DNA polymerase, consistent with in vivo removal of 3'-phosphate groups, facilitating DNA repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Monoéster Fosfórico Hidrolasas/genética , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Southern Blotting , Bovinos , Mapeo Cromosómico , Clonación Molecular , ADN Complementario/química , Humanos , Peróxido de Hidrógeno/toxicidad , Datos de Secuencia Molecular , Oxidación-Reducción , Monoéster Fosfórico Hidrolasas/fisiología
6.
Biochemistry ; 38(12): 3615-23, 1999 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-10090748

RESUMEN

Escherichia coli endo IV is a bifunctional DNA repair protein, i.e., possessing both apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase activities. The former activity cleaves AP sites, whereas the latter one removes a variety of 3'-blocking groups present at single-strand breaks in damaged DNA. However, the precise reaction mechanism by which endo IV cleaves DNA lesions is unknown. To probe this mechanism, we have identified eight amino acid substitutions that alter endo IV function in vivo. Seven of these mutant proteins are variably expressed in E. coli and, when purified, show a 10-60-fold reduction in both AP endonuclease and 3'-diesterase activities. The most severe defect was observed with the one remaining mutant (E145G) that showed normal protein expression. This mutant has lost the ability to bind double-stranded DNA and showed a dramatic 150-fold reduction in enzymatic activities. We conclude that the AP endonuclease and the 3'-diesterase activities of endo IV are associated with a single active site, that is perhaps remote from the DNA binding domain.


Asunto(s)
Liasas de Carbono-Oxígeno/metabolismo , Reparación del ADN , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Liasas de Carbono-Oxígeno/química , Liasas de Carbono-Oxígeno/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Farmacorresistencia Microbiana , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
7.
J Biol Chem ; 273(34): 21489-96, 1998 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-9705277

RESUMEN

The model carcinogen 4-nitroquinoline 1-oxide (4-NQO) has historically been characterized as "UV-mimetic" with respect to its genotoxic properties. However, recent evidence indicates that 4-NQO, unlike 254-nm UV light, may exert significant cytotoxic and/or mutagenic potential via the generation of reactive oxygen species. To elucidate the response of eukaryotic cells to 4-NQO-induced oxidative stress, we isolated Saccharomyces cerevisiae mutants exhibiting hypersensitivity to the cytotoxic effects of this mutagen. One such mutant, EBY1, was cross-sensitive to the oxidative agents UVA and diamide while retaining parental sensitivities to 254-nm UV light, methyl methanesulfonate, and ionizing radiation. A complementing gene (designated yPTPA1), restoring full UVA and 4-NQO resistance to EBY1 and encoding a protein that shares 40% identity with the human phosphotyrosyl phosphatase activator hPTPA, has been isolated. Targeted deletion of yPTPA1 in wild type yeast engendered the identical pattern of mutagen hypersensitivity as that manifested by EBY1, in addition to a spontaneous mutator phenotype that was markedly enhanced upon exposure to either UVA or 4-NQO but not to 254-nm UV or methyl methanesulfonate. Moreover, the yptpa1 deletion mutant exhibited a marked deficiency in the recovery of high molecular weight DNA following 4-NQO exposure, revealing a defect at the level of DNA repair. These data (i) strongly support a role for active oxygen intermediates in determining the genotoxic outcome of 4-NQO exposure and (ii) suggest a novel mechanism in yeast involving yPtpa1p-mediated activation of a phosphatase that participates in the repair of oxidative DNA damage, implying that hPTPA may exert a similar function in humans.


Asunto(s)
4-Nitroquinolina-1-Óxido/farmacología , Daño del ADN , Estrés Oxidativo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , ADN/efectos de los fármacos , ADN/efectos de la radiación , Humanos , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Isomerasa de Peptidilprolil , Fosfoproteínas Fosfatasas , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae , Rayos Ultravioleta
8.
Genetics ; 149(2): 893-901, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9611200

RESUMEN

Yeast cells deficient in the transcriptional activator Imp2p are viable, but display marked hypersensitivity to a variety of oxidative agents. We now report that imp2 null mutants are also extremely sensitive to elevated levels of the monovalent ions, Na+ and Li+, as well as to the divalent ions Ca2+, Mn2+, Zn2+, and Cu2+, but not to Cd2+, Mg2+, Co2+, Ni2+, and Fe2+, as compared to the parent strain. We next searched for multicopy suppressor genes that would allow the imp2Delta mutant to grow under high salt conditions. Two genes that independently restored normal salt-resistance to the imp2Delta mutant, ENA1 and HAL3, were isolated. ENA1 encodes a P-type ion pump involved in monovalent ion efflux from the cell, while HAL3 encodes a protein required for activating the expression of Ena1p. Neither ENA1 nor HAL3 gene expression was positively regulated by Imp2p. Moreover, the imp2 ena1 double mutant was exquisitely sensitive to Na+/Li+ cations, as compared to either single mutant, implying that Imp2p mediates Na+/Li+ cation homeostasis independently of Ena1p.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Ciclo Celular , Proteínas Fúngicas/fisiología , Homeostasis , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transactivadores/fisiología , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/genética , Bleomicina/farmacología , Cationes Bivalentes , Cobre/farmacología , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Dosificación de Gen , Genes Supresores , Homeostasis/genética , Transporte Iónico/genética , Cloruro de Litio/farmacología , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Mutación , Proteínas Nucleares/genética , Cloruro de Sodio/farmacología , ATPasa Intercambiadora de Sodio-Potasio , Transactivadores/genética
9.
Biochim Biophys Acta ; 1396(1): 15-20, 1998 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-9524207

RESUMEN

The Apn1 protein of the budding yeast Saccharomyces cerevisiae is a DNA repair enzyme that hydrolyzes apurinic/apyrimidinic (AP) sites and removes 3'-blocking groups present at single strand breaks of damaged DNA. Yeast cells lacking Apn1 are hypersensitive to DNA damaging agents that produce AP sites and DNA strand breaks with blocked 3'-termini. In this study, we showed that the fission yeast Schizosaccharomyces pombe bears a homologue, Spapn1, that is 45% identical to S. cerevisiae Apn1. However, the Spapn1 gene is apparently not expressed. Active expression of S. cerevisiae Apn1 in S. pombe conferred no additional resistance to DNA damaging agents. These data suggest that the pathway by which S. pombe repairs AP sites is independent of a functional Apn1-like AP endonuclease.


Asunto(s)
Liasas de Carbono-Oxígeno/genética , Reparación del ADN , Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli , Familia de Multigenes , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Clonación Molecular , Enzimas Reparadoras del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Escherichia coli/genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología
10.
J Biol Chem ; 273(4): 2109-17, 1998 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-9442051

RESUMEN

We have characterized the regulation of spermidine transport in yeast and identified some of the genes involved in its control. Disruption of the SPE2 gene encoding S-adenosylmethionine decarboxylase, which catalyzes an essential step in polyamine biosynthesis, upregulated the initial velocity of spermidine uptake in wild-type cells as well as in the polyamine transport-deficient pcp1 mutants. Exogenous spermidine rapidly inactivated spermidine transport with a half-life of approximately 10-15 min via a process that did not require de novo protein synthesis but was accelerated by cycloheximide addition. Conversely, reactivation of spermidine influx upon polyamine deprivation required active protein synthesis. The stability of polyamine carrier activity was increased 2-fold in polyamine-depleted spe2 deletion mutants, indicating that endogenous polyamines also contribute to the down-regulation of spermidine transport. Ligand-mediated repression of spermidine transport was delayed in end3 and end4 mutants that are deficient in the initial steps of the endocytic pathway, and spermidine uptake activity was increased 4- to 5-fold in end3 mutants relative to parental cells, although the stability of the transport system was similar in both strains. Disruption of the NPR1 gene, which encodes a putative Ser/Thr protein kinase essential for the reactivation of several nitrogen permeases, resulted in a 3-fold decrease in spermidine transport in NH4(+)-rich media but did not prevent its down-regulation by spermidine. The defect in spermidine transport was more pronounced in NH4(+)- than proline-grown npr1 cells, suggesting that NPR1 protects against nitrogen catabolite repression of polyamine uptake activity. These results suggest that (a) the polyamine carrier is an unstable protein subject to down-regulation by spermidine via a process involving ligand inactivation followed by endocytosis and that (b) NPR1 expression fully prevents nitrogen catabolite repression of polyamine transport, unlike the role predicted for that gene by the inactivation/reactivation model proposed for other nitrogen permeases.


Asunto(s)
Endocitosis , Proteínas Fúngicas/metabolismo , Proteínas Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Espermidina/metabolismo , Transporte Biológico , Moléculas de Adhesión Celular/metabolismo , Regulación hacia Abajo , Proteína-Tirosina Quinasas de Adhesión Focal , Péptidos y Proteínas de Señalización Intracelular , Cinética , Ligandos , Poliaminas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Regulación hacia Arriba
11.
Mol Cell Biol ; 17(9): 5437-52, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9271420

RESUMEN

DNA end-labeling procedures were used to analyze both the frequency and distribution of DNA strand breaks in mammalian cells exposed or not to different types of DNA-damaging agents. The 3' ends were labeled by T4 DNA polymerase-catalyzed nucleotide exchange carried out in the absence or presence of Escherichia coli endonuclease IV to cleave abasic sites and remove 3' blocking groups. Using this sensitive assay, we show that DNA isolated from human cells or mouse tissues contains variable basal levels of DNA strand interruptions which are associated with normal bioprocesses, including DNA replication and repair. On the other hand, distinct dose-dependent patterns of DNA damage were assessed quantitatively in cultured human cells exposed briefly to menadione, methylmethane sulfonate, topoisomerase II inhibitors, or gamma rays. In vivo induction of single-strand breaks and abasic sites by methylmethane sulfonate was also measured in several mouse tissues. The genomic distribution of these lesions was investigated by DNA cleavage with the single-strand-specific S1 nuclease. Strikingly similar cleavage patterns were obtained with all DNA-damaging agents tested, indicating that the majority of S1-hypersensitive sites detected were not randomly distributed over the genome but apparently were clustered in damage-sensitive regions. The parallel disappearance of 3' ends and loss of S1-hypersensitive sites during post-gamma-irradiation repair periods indicates that these sites were rapidly repaired single-strand breaks or gaps (2- to 3-min half-life). Comparison of S1 cleavage patterns obtained with gamma-irradiated DNA and gamma-irradiated cells shows that chromatin structure was the primary determinant of the distribution of the DNA damage detected.


Asunto(s)
Daño del ADN , Proteínas de Escherichia coli , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/metabolismo , Animales , Antineoplásicos/farmacología , Catálisis , Cromatina/efectos de los fármacos , Cromatina/efectos de la radiación , ADN/efectos de los fármacos , ADN/efectos de la radiación , ADN Nucleotidilexotransferasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido) , Hemostáticos/farmacología , Humanos , Liasas/metabolismo , Metilmetanosulfonato/farmacología , Ratones , Ratones Endogámicos C57BL , Estreptonigrina/farmacología , Tenipósido/farmacología , Células Tumorales Cultivadas , Proteínas Virales/metabolismo , Vitamina K/farmacología
12.
Mol Cell Biol ; 17(6): 2994-3004, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9154797

RESUMEN

Eukaryotic polyamine transport systems have not yet been characterized at the molecular level. We have used transposon mutagenesis to identify genes controlling polyamine transport in Saccharomyces cerevisiae. A haploid yeast strain was transformed with a genomic minitransposon- and lacZ-tagged library, and positive clones were selected for growth resistance to methylglyoxal bis(guanylhydrazone) (MGBG), a toxic polyamine analog. A 747-bp DNA fragment adjacent to the lacZ fusion gene rescued from one MGBG-resistant clone mapped to chromosome X within the coding region of a putative Ser/Thr protein kinase gene of previously unknown function (YJR059w, or STK2). A 304-amino-acid stretch comprising 11 of the 12 catalytic subdomains of Stk2p is approximately 83% homologous to the putative Pot1p/Kkt8p (Stk1p) protein kinase, a recently described activator of low-affinity spermine uptake in yeast. Saturable spermidine transport in stk2::lacZ mutants had an approximately fivefold-lower affinity and twofold-lower Vmax than in the parental strain. Transformation of stk2::lacZ cells with the STK2 gene cloned into a single-copy expression vector restored spermidine transport to wild-type levels. Single mutants lacking the catalytic kinase subdomains of STK1 exhibited normal parameters for the initial rate of spermidine transport but showed a time-dependent decrease in total polyamine accumulation and a low-level resistance to toxic polyamine analogs. Spermidine transport was repressed by prior incubation with exogenous spermidine. Exogenous polyamine deprivation also derepressed residual spermidine transport in stk2::lacZ mutants, but simultaneous disruption of STK1 and STK2 virtually abolished high-affinity spermidine transport under both repressed and derepressed conditions. On the other hand, putrescine uptake was also deficient in stk2::lacZ mutants but was not repressed by exogenous spermidine. Interestingly, stk2::lacZ mutants showed increased growth resistance to Li+ and Na+, suggesting a regulatory relationship between polyamine and monovalent inorganic cation transport. These results indicate that the putative STK2 Ser/Thr kinase gene is an essential determinant of high-affinity polyamine transport in yeast whereas its close homolog STK1 mostly affects a lower-affinity, low-capacity polyamine transport activity.


Asunto(s)
Quinasas Ciclina-Dependientes , Proteínas Serina-Treonina Quinasas/genética , Espermidina/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico Activo/genética , Northern Blotting , Cinética , Litio/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Poliaminas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Putrescina/metabolismo , Mapeo Restrictivo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Sodio/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
13.
Biochemistry ; 36(20): 6100-6, 1997 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-9166780

RESUMEN

Earlier work indicates that the major DNA repair phosphodiesterase (PDE) in yeast cells is the well-characterized Apn1 protein. Apn1 demonstrates both Mg2+-independent PDE activity and Mg2+-independent class II apurinic/apyrimidinic (AP) endonuclease activity and represents greater than 90% of the activity detected in crude extracts from wild-type yeast cells. Apn1 is related to Echerichia coli endonuclease IV, both in its enzymatic properties and its amino acid sequence. In this work, we report the partial purification of a novel yeast protein, Pde1, present in Apn1-deficient cells. Pde1 is purified by sequential BioRex-70, PBE118, and MonoS chromatography steps using a sensitive and highly specific 3'-phosphoglycolate-terminated oligonucleotide-based assay as a measure of PDE activity. Mg2+-stimulated PDE and Mg2+-stimulated class II AP endonuclease copurify during this procedure. These results indicate that yeast, like many other organisms studied to date, has enzymatic redundancy for the repair of 3'-blocking groups and abasic sites.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Daño del ADN , Reparación del ADN , Hidrolasas Diéster Fosfóricas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , 3',5'-AMP Cíclico Fosfodiesterasas/aislamiento & purificación , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1 , Enzimas Reparadoras del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Endodesoxirribonucleasas/deficiencia , Liasas/aislamiento & purificación , Liasas/metabolismo
14.
Mol Microbiol ; 24(4): 711-21, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9194699

RESUMEN

Escherichia coli exonuclease III and endonuclease III are two distinct DNA-repair enzymes that can cleave apurinic/apyrimidinic (AP) sites by different mechanisms. While the AP endonuclease activity of exonuclease III generates a 3'-hydroxyl group at AP sites, the AP lyase activity of endonuclease III produces a 3'-alpha,beta unsaturated aldehyde that prevents DNA-repair synthesis. Saccharomyces cerevisiae Apn1 is the major AP endonuclease/3'-diesterase that also produces a 3'-hydroxyl group at the AP site, but it is unrelated to either exonuclease III or endonuclease III. apn1 deletion mutants are unable to repair AP sites generated by the alkylating agent methyl methane sulphonate and display a spontaneous mutator phenotype. This work shows that either exonuclease III or endonuclease III can functionally replace yeast Apn1 in the repair of AP sites. Two conclusions can be derived from these findings. The first of these conclusions is that yeast cells can complete the repair of AP sites even though they are cleaved by AP lyase. This implies that AP lyase can contribute significantly to the repair of AP sites and that yeast cells have the ability to process the alpha,beta unsaturated aldehyde produced by endonuclease III. The second of these conclusions is that unrepaired AP sites are strictly the cause of the high spontaneous mutation rate in the apn1 deletion mutant.


Asunto(s)
Ácido Apurínico/genética , Reparación del ADN , Desoxirribonucleasa (Dímero de Pirimidina) , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Enzimas Reparadoras del ADN , Endodesoxirribonucleasas/genética , Escherichia coli/enzimología , Prueba de Complementación Genética , Metilmetanosulfonato , Mutagénesis , Saccharomyces cerevisiae/enzimología
15.
Biochem Cell Biol ; 75(4): 327-36, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9493955

RESUMEN

Apurinic-apyrimidinic (AP) sites are DNA lesions that lack template information and are produced either spontaneously or by a variety of DNA damaging agents. AP sites must therefore be repaired; otherwise they are mutagenic. All cells investigated to date possess the DNA repair enzyme AP endonuclease that can repair AP sites. There are two discrete families of AP endonucleases, Exo III and Endo IV, which are exemplified by Escherichia coli exonuclease III and endonuclease IV, respectively. These AP endonucleases have evolved not only to repair AP sites but also to correct distinct DNA lesions.


Asunto(s)
Liasas de Carbono-Oxígeno/fisiología , Reparación del ADN , Proteínas de Escherichia coli , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética
16.
Can J Microbiol ; 42(12): 1263-6, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8989864

RESUMEN

The antibiotic bleomycin is used as an anticancer agent for treating a variety of tumours. The antitumour effect of bleomycin is related to its ability to produce lesions such as apurinic/apyrimidinic sites and single- and double-strand breaks in the cellular DNA. Phleomycin is a structurally related form of bleomycin, but it is not used as an anticancer agent. While phleomycin can also damage DNA, neither the exact nature of these DNA lesions nor the cellular process that repairs phleomycin-induced DNA lesions is known. As a first step to understand how eukaryotic cells provide resistance to phleomycin, we used the yeast Saccharomyces cerevisiae as a model system. Several phleomycin-sensitive mutants were generated following gamma-radiation treatment and among these mutants, ph140 was found to be the most sensitive to phleomycin. Molecular analysis revealed that the mutant ph140 harbored a mutation in the DNA repair gene RAD6. Moreover, a functional copy of the RAD6 gene restored full phleomycin resistance to strain ph140. Our findings indicate that the RAD6 protein is essential for yeast cellular resistance to phleomycin.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Reparación del ADN/genética , Genes Fúngicos , Ligasas/genética , Fleomicinas/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , 4-Nitroquinolina-1-Óxido/farmacología , Bleomicina/farmacología , Relación Dosis-Respuesta a Droga , Farmacorresistencia Microbiana/genética , Metilmetanosulfonato/farmacología , Mutación , Mapeo Restrictivo , Saccharomyces cerevisiae/efectos de los fármacos , Enzimas Ubiquitina-Conjugadoras
17.
Gene ; 179(2): 291-3, 1996 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-8972914

RESUMEN

The Saccharomyces cerevisiae APN1 gene, encoding the bifunctional DNA repair enzyme apurinic/apyrimidinic (AP) endonuclease/3'-repair diesterase, was used as a probe to isolate a gene homolog, CeAPN1, from a Caenorhabditis elegans cDNA library. The CeAPN1 gene is predicted to encode a protein 30 kDa in size, which shares 40.4% and 44.9% identity at the amino acid level with, respectively, S. cerevisiae Apn1 and Escherichia coli endonuclease IV. We suggest that CeApn1 protein is a member of the endonuclease IV family of DNA repair enzymes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Proteínas de Escherichia coli , Proteínas del Helminto/genética , Liasas/genética , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/enzimología , Enzimas Reparadoras del ADN , ADN de Helmintos , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Endodesoxirribonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Genes de Helminto , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
18.
Curr Genet ; 30(4): 279-83, 1996 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8781169

RESUMEN

The antitumor activity of bleomycin is associated with its ability to produce DNA lesions. The cellular process that repairs bleomycin-induced DNA lesions is not entirely clear. To understand how these DNA lesions are repaired in eukaryotic cells, we used mini Tn3 : : LEU2 :: LacZ transposon mutagenesis to isolate yeast mutants that were hypersensitive to bleomycin. One of the mutants, HCY69, was characterized further and found to be 4- and 3-fold more sensitive, respectively, to bleomycin and hydrogen peroxide, as compared to the parent. The mutant displayed parental resistance to a variety of other DNA-damaging agents. Plasmid rescue and DNA sequence analysis revealed that the transposon interrupted the OXA1 gene, which encodes a protein required to process one of the subunits, cox II, of the cytochrome oxidase complex in mitochondria. A plasmid carrying the native OXA1 gene fully restored drug resistance to strain HCY69. Our data strongly suggest that functional mitochondria are required for cellular protection against the toxic effects of bleomycin.


Asunto(s)
Bleomicina/farmacología , Farmacorresistencia Microbiana/genética , Mitocondrias/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Daño del ADN/efectos de los fármacos , Elementos Transponibles de ADN , Complejo IV de Transporte de Electrones , Eliminación de Gen , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales , Mutagénesis , Mutación , Proteínas Nucleares/genética , Oxidantes/farmacología , Fenotipo
19.
Can J Microbiol ; 42(8): 835-43, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8776853

RESUMEN

The antitumor drug bleomycin can produce a variety of lesions in the cellular DNA by a free radical dependent mechanism. To understand how these DNA lesions are repaired, bleomycin-hypersensitive mutants were isolated from the yeast Saccharomyces cerevisiae. We report here the analysis of one mutant, DRY25, that showed extreme sensitivity to bleomycin. This mutant also exhibited hypersensitivity to hydrogen peroxide and t-butyl hydroperoxide, but showed no sensitivity to other DNA-damaging agents, including gamma-rays, ultraviolet light, and methyl methanesulfonate. Subsequent analysis revealed that strain DRY25 was severely deficient in the repair of bleomycin-induced DNA lesions. Under normal growth conditions, DRY25 displayed a 3-fold increase in the frequency of chromosomal translocation that was further stimulated by 5- to 15-fold when the cells were treated with either bleomycin or hydrogen peroxide, but not by methyl methanesulfonate, as compared with the wild type. Genetic analysis indicated that the mutant defect was independent of the nucleotide excision, postreplication, or recombinational DNA-repair pathways. These data suggest that one conceivable defect of DRY25 is that it lacks a protein that protects the cell against oxidative damage to DNA. A clone that fully complemented DRY25 defect was isolated and the possible roles of the complementing gene are discussed.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Bleomicina/farmacología , Mutación , Saccharomyces cerevisiae/genética , Cruzamientos Genéticos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Farmacorresistencia Microbiana/genética , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Ligasas/genética , Pruebas de Sensibilidad Microbiana , Fenotipo , Proteína Recombinante y Reparadora de ADN Rad52 , Proteínas de Saccharomyces cerevisiae , Translocación Genética , Enzimas Ubiquitina-Conjugadoras
20.
Mol Cell Biol ; 16(5): 2091-100, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-8628275

RESUMEN

Bleomycin belongs to a class of antitumor drugs that damage cellular DNA through the production of free radicals. The molecular basis by which eukaryotic cells provide resistance to the lethal effects of bleomycin is not clear. Using the yeast Saccharomyces cerevisiae as a model with which to study the effect of bleomycin damage on cellular DNA, we isolated several mutants that display hypersensitivity to bleomycin. A DNA clone containing the IMP2 gene that complemented the most sensitive bleomycin mutant was identified. A role for IMP2 in defense against the toxic effects of bleomycin has not been previously reported. imp2 null mutants were constructed and were found to be 15-fold more sensitive to bleomycin than wild-type strains. The imp2 null mutants were also hypersensitive to several oxidants but displayed parental resistance to UV light and methyl methane sulfonate. Exposure of mutants to either bleomycin or hydrogen peroxide resulted in the accumulation of strand breaks in the chromosomal DNA, which remained even after 6 h postchallenge, but not in the wild type. These results suggest that the oxidant hypersensitivity of the imp2 mutant results from a defect in the repair of oxidative DNA lesions. Molecular analysis of IMP2 indicates that it encodes a transcriptional activator that can activate a reporter gene via an acidic domain located at the N terminus. Imp2 lacks a DNA binding motif, but it possesses a C-terminal leucine-rich repeat. With these data taken together, we propose that Imp2 prevents oxidative damage by regulating the expression of genes that are directly required to repair DNA damage.


Asunto(s)
Bleomicina/farmacología , Daño del ADN , Endopeptidasas/biosíntesis , Genes Fúngicos , Oxidantes/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas , Transactivadores/biosíntesis , Proteínas Bacterianas/biosíntesis , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Genotipo , Cinética , Proteínas Mitocondriales , Datos de Secuencia Molecular , Proteínas Nucleares , Oligodesoxirribonucleótidos , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...