Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 7601, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110195

RESUMEN

Biological vision relies on representations of the physical world at different levels of complexity. Relevant features span from simple low-level properties, as contrast and spatial frequencies, to object-based attributes, as shape and category. However, how these features are integrated into coherent percepts is still debated. Moreover, these dimensions often share common biases: for instance, stimuli from the same category (e.g., tools) may have similar shapes. Here, using magnetoencephalography, we revealed the temporal dynamics of feature processing in human subjects attending to objects from six semantic categories. By employing Relative Weights Analysis, we mitigated collinearity between model-based descriptions of stimuli and showed that low-level properties (contrast and spatial frequencies), shape (medial-axis) and category are represented within the same spatial locations early in time: 100-150 ms after stimulus onset. This fast and overlapping processing may result from independent parallel computations, with categorical representation emerging later than the onset of low-level feature processing, yet before shape coding. Categorical information is represented both before and after shape, suggesting a role for this feature in the refinement of categorical matching.

2.
Front Hum Neurosci ; 13: 32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837851

RESUMEN

Classical studies have isolated a distributed network of temporal and frontal areas engaged in the neural representation of speech perception and production. With modern literature arguing against unique roles for these cortical regions, different theories have favored either neural code-sharing or cortical space-sharing, thus trying to explain the intertwined spatial and functional organization of motor and acoustic components across the fronto-temporal cortical network. In this context, the focus of attention has recently shifted toward specific model fitting, aimed at motor and/or acoustic space reconstruction in brain activity within the language network. Here, we tested a model based on acoustic properties (formants), and one based on motor properties (articulation parameters), where model-free decoding of evoked fMRI activity during perception, imagery, and production of vowels had been successful. Results revealed that phonological information organizes around formant structure during the perception of vowels; interestingly, such a model was reconstructed in a broad temporal region, outside of the primary auditory cortex, but also in the pars triangularis of the left inferior frontal gyrus. Conversely, articulatory features were not associated with brain activity in these regions. Overall, our results call for a degree of interdependence based on acoustic information, between the frontal and temporal ends of the language network.

3.
Sci Rep ; 7(1): 17029, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208951

RESUMEN

Classical models of language localize speech perception in the left superior temporal and production in the inferior frontal cortex. Nonetheless, neuropsychological, structural and functional studies have questioned such subdivision, suggesting an interwoven organization of the speech function within these cortices. We tested whether sub-regions within frontal and temporal speech-related areas retain specific phonological representations during both perception and production. Using functional magnetic resonance imaging and multivoxel pattern analysis, we showed functional and spatial segregation across the left fronto-temporal cortex during listening, imagery and production of vowels. In accordance with classical models of language and evidence from functional studies, the inferior frontal and superior temporal cortices discriminated among perceived and produced vowels respectively, also engaging in the non-classical, alternative function - i.e. perception in the inferior frontal and production in the superior temporal cortex. Crucially, though, contiguous and non-overlapping sub-regions within these hubs performed either the classical or non-classical function, the latter also representing non-linguistic sounds (i.e., pure tones). Extending previous results and in line with integration theories, our findings not only demonstrate that sensitivity to speech listening exists in production-related regions and vice versa, but they also suggest that the nature of such interwoven organisation is built upon low-level perception.


Asunto(s)
Percepción Auditiva/fisiología , Lóbulo Frontal/fisiología , Lenguaje , Fonética , Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Lateralidad Funcional , Humanos , Imaginación , Imagen por Resonancia Magnética/métodos , Masculino
4.
Front Psychol ; 7: 866, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375542

RESUMEN

In the last decades, the rapid growth of functional brain imaging methodologies allowed cognitive neuroscience to address open questions in philosophy and social sciences. At the same time, novel insights from cognitive neuroscience research have begun to influence various disciplines, leading to a turn to cognition and emotion in the fields of planning and architectural design. Since 2003, the Academy of Neuroscience for Architecture has been supporting 'neuro-architecture' as a way to connect neuroscience and the study of behavioral responses to the built environment. Among the many topics related to multisensory perceptual integration and embodiment, the concept of hapticity was recently introduced, suggesting a pivotal role of tactile perception and haptic imagery in architectural appraisal. Arguments have thus risen in favor of the existence of shared cognitive foundations between hapticity and the supramodal functional architecture of the human brain. Precisely, supramodality refers to the functional feature of defined brain regions to process and represent specific information content in a more abstract way, independently of the sensory modality conveying such information to the brain. Here, we highlight some commonalities and differences between the concepts of hapticity and supramodality according to the distinctive perspectives of architecture and cognitive neuroscience. This comparison and connection between these two different approaches may lead to novel observations in regard to people-environment relationships, and even provide empirical foundations for a renewed evidence-based design theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...