Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 13: 32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837851

RESUMEN

Classical studies have isolated a distributed network of temporal and frontal areas engaged in the neural representation of speech perception and production. With modern literature arguing against unique roles for these cortical regions, different theories have favored either neural code-sharing or cortical space-sharing, thus trying to explain the intertwined spatial and functional organization of motor and acoustic components across the fronto-temporal cortical network. In this context, the focus of attention has recently shifted toward specific model fitting, aimed at motor and/or acoustic space reconstruction in brain activity within the language network. Here, we tested a model based on acoustic properties (formants), and one based on motor properties (articulation parameters), where model-free decoding of evoked fMRI activity during perception, imagery, and production of vowels had been successful. Results revealed that phonological information organizes around formant structure during the perception of vowels; interestingly, such a model was reconstructed in a broad temporal region, outside of the primary auditory cortex, but also in the pars triangularis of the left inferior frontal gyrus. Conversely, articulatory features were not associated with brain activity in these regions. Overall, our results call for a degree of interdependence based on acoustic information, between the frontal and temporal ends of the language network.

2.
Sci Rep ; 7(1): 17029, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208951

RESUMEN

Classical models of language localize speech perception in the left superior temporal and production in the inferior frontal cortex. Nonetheless, neuropsychological, structural and functional studies have questioned such subdivision, suggesting an interwoven organization of the speech function within these cortices. We tested whether sub-regions within frontal and temporal speech-related areas retain specific phonological representations during both perception and production. Using functional magnetic resonance imaging and multivoxel pattern analysis, we showed functional and spatial segregation across the left fronto-temporal cortex during listening, imagery and production of vowels. In accordance with classical models of language and evidence from functional studies, the inferior frontal and superior temporal cortices discriminated among perceived and produced vowels respectively, also engaging in the non-classical, alternative function - i.e. perception in the inferior frontal and production in the superior temporal cortex. Crucially, though, contiguous and non-overlapping sub-regions within these hubs performed either the classical or non-classical function, the latter also representing non-linguistic sounds (i.e., pure tones). Extending previous results and in line with integration theories, our findings not only demonstrate that sensitivity to speech listening exists in production-related regions and vice versa, but they also suggest that the nature of such interwoven organisation is built upon low-level perception.


Asunto(s)
Percepción Auditiva/fisiología , Lóbulo Frontal/fisiología , Lenguaje , Fonética , Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Lateralidad Funcional , Humanos , Imaginación , Imagen por Resonancia Magnética/métodos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA