Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biochem Biophys Res Commun ; 681: 249-270, 2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793311

RESUMEN

Chalcones have a long history of being used for many medical purposes. These are the most prestigious scaffolds in medicine. The potential of Millepachine and its derivatives to treat various malignancies has been demonstrated in this review. The anticancer effects of Millepachine and its derivatives on ovarian cancer, hepatocellular carcinoma, breast, liver, colon, cervical, prostate, stomach, and gliomas are highlighted in the current review. Several genes that are crucial in reducing the severity of the disease have been altered by these substances. They mainly work by preventing tubulin polymerizing. They also exhibit apoptosis and cell cycle arrest at the G2/M phase. Additionally, these compounds inhibit invasion and migration and have antiproliferative effects. Preclinical studies have shown that Millepachine and its derivatives offer exceptional potential for treating a number of cancers. These results need to be confirmed in clinical research in order to develop viable cancer therapies.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Chalconas , Neoplasias Hepáticas , Masculino , Humanos , Chalconas/farmacología , Chalconas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Tubulina (Proteína)/metabolismo , Proliferación Celular , Línea Celular Tumoral , Relación Estructura-Actividad , Moduladores de Tubulina/farmacología , Ensayos de Selección de Medicamentos Antitumorales
2.
Database (Oxford) ; 20232023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37702993

RESUMEN

The present article describes the building of a small-molecule web server, CBPDdb, employing R-shiny. For the generation of the web server, three compounds were chosen, namely coumarin, benzothiazole and pyrazole, and their derivatives were curated from the literature. The two-dimensional (2D) structures were drawn using ChemDraw, and the .sdf file was created employing Discovery Studio Visualizer v2017. These compounds were read on the R-shiny app using ChemmineR, and the dataframe consisting of a total of 1146 compounds was generated and manipulated employing the dplyr package. The web server is provided with JSME 2D sketcher. The descriptors of the compounds are obtained using propOB with a filter. The users can download the filtered data in the .csv and .sdf formats, and the entire dataset of a compound can be downloaded in .sdf format. This web server facilitates the researchers to screen plausible inhibitors for different diseases. Additionally, the method used in building the web server can be adapted for developing other small-molecule databases (web servers) in RStudio. Database URL: https://srampogu.shinyapps.io/CBPDdb_Revised/.


Asunto(s)
Benzotiazoles , Cumarinas , Bases de Datos Factuales , Pirazoles
3.
PeerJ ; 11: e15885, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37605747

RESUMEN

We built the Curcumin Chalcone Derivatives Database (CCDD) to enable the effective virtual screening of highly potent curcumin and its analogs. The two-dimensional (2D) structures were drawn using the ChemBioOffice package and converted to 3D structures using Discovery Studio Visualizer V 2021 (DS). The database was built using different Python modules. For the 3D structures, different Python packages were used to obtain the data frame of compounds. This framework is also used to visualize the compounds. The webserver enables the users to screen the compounds according to Lipinski's rule of five. The structures can be downloaded in .sdf and .mol format. The data frame (df) can be downloaded in .csv format. Our webserver can help computational drug discovery researchers find new therapeutics and build new webservers. The CCDD is freely available at: https://srampogu-ccdd-ccdd-8uldk8.streamlit.app/.


Asunto(s)
Chalcona , Chalconas , Curcumina , Bases de Datos Factuales , Descubrimiento de Drogas
4.
Sci Rep ; 13(1): 10583, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386052

RESUMEN

Coronavirus disease 2019 (COVID-19) is a recent pandemic that caused serious global emergency. To identify new and effective therapeutics, we employed a drug repurposing approach. The poly (ADP ribose) polymerase inhibitors were used for this purpose and were repurposed against the main protease (Mpro) target of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). The results from these studies were used to design compounds using the 'Grow Scaffold' modules available on Discovery Studio v2018. The three designed compounds, olaparib 1826 and olaparib 1885, and rucaparib 184 demonstrated better CDOCKER docking scores for Mpro than their parent compounds. Moreover, the compounds adhered to Lipinski's rule of five and demonstrated a synthetic accessibility score of 3.55, 3.63, and 4.30 for olaparib 1826, olaparib 1885, and rucaparib 184, respectively. The short-range Coulombic and Lennard-Jones potentials also support the potential binding of the modified compounds to Mpro. Therefore, we propose these three compounds as novel SARS-CoV-2 inhibitors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reposicionamiento de Medicamentos , Pandemias
5.
Front Cell Infect Microbiol ; 13: 1076251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844409

RESUMEN

Orthopoxvirus is one of the most notorious genus amongst the Poxviridae family. Monkeypox (MP) is a zoonotic disease that has been spreading throughout Africa. The spread is global, and incidence rates are increasing daily. The spread of the virus is rapid due to human-to-human and animals-to-human transmission. World Health Organization (WHO) has declared monkeypox virus (MPV) as a global health emergency. Since treatment options are limited, it is essential to know the modes of transmission and symptoms to stop disease spread. The information from host-virus interactions revealed significantly expressed genes that are important for the progression of the MP infection. In this review, we highlighted the MP virus structure, transmission modes, and available therapeutic options. Furthermore, this review provides insights for the scientific community to extend their research work in this field.


Asunto(s)
Monkeypox virus , Mpox , Animales , Humanos , Mpox/epidemiología , Zoonosis , África , Interacciones Microbiota-Huesped
6.
Heliyon ; 9(2): e13324, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36816262

RESUMEN

Tuberculosis (TB) in one of the dreadful diseases present globally. This is caused by Mycobacterium tuberculosis. Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS) is an essential enzyme in biotin biosynthesis and is an ideal target to design and develop novel inhibitors. In order to effectively combat this disease six natural compound (butein) analogues were subjected to molecular docking to determine their binding mode and the binding affinities. The resultant complex structures were subjected to 500 ns simulation run to estimate their binding stabilities using GROMACS. The molecular dynamics simulation studies provided essential evidence that the systems were stable during the progression of 500 ns simulation run. The root mean square deviation (RMSD) of all the systems was found to be below 0.3 nm stating that the systems are well converged. The radius of gyration (Rg) profiles indicated that the systems were highly compact without any major fluctuations. The principle component analysis (PCA) and Gibbs energy landscape studies have revealed that the comp3, comp5 and comp11 systems navigated marginally through the PC2. The intermolecular interactions have further demonstrated that all the compounds have displayed key residue interactions, firmly holding the ligands at the binding pocket. The residue Lys37 was found consistently to interact with all the ligands highlighting its potential role in inhibiting the MtDTBS. Our investigation further put forth two novel compounds (comp10 and comp11) as putative antituberculosis agents. Collectively, we propose six compounds has plausible inhibitors to curtail TB and further can act as scaffolds in designing new compounds.

7.
Sci One Health ; 2: 100040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39077048

RESUMEN

Infectious diseases have posed a global threat recently, progressing from endemic to pandemic. Early detection and finding a better cure are methods for curbing the disease and its transmission. Machine learning (ML) has demonstrated to be an ideal approach for early disease diagnosis. This review highlights the use of ML algorithms for monkeypox (MP). Various models, such as CNN, DL, NLP, Naïve Bayes, GRA-TLA, HMD, ARIMA, SEL, Regression analysis, and Twitter posts were built to extract useful information from the dataset. These findings show that detection, classification, forecasting, and sentiment analysis are primarily analyzed. Furthermore, this review will assist researchers in understanding the latest implementations of ML in MP and further progress in the field to discover potent therapeutics.

8.
Biomed Pharmacother ; 155: 113760, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271547

RESUMEN

Breast cancer is one of the major causes of mortality in women worldwide. The current treatments available are radiation therapy (RT), surgery, endocrine (hormone) therapy (ET), chemotherapy (CT), and targeted therapy. These treatments are associated with certain side effects that demand the use of natural compounds due to their lower to negligible side effects. One such category of natural compounds is alkaloids. Alkaloids are a group of natural compounds that have gained widespread attention due to their use as potential therapeutics. Alkaloids exert anti-inflammatory and antiviral properties along with antimicrobial activities. In the current review, 12 alkaloids are reviewed in detail for their potential in treating breast cancer. These alkaloids have been shown to induce apoptosis, decrease tumor volume, inhibit cell proliferation and migration, and induce autophagy and they can also be used as a component of combination therapy. This review provides comprehensive information on the in vitro and in vivo therapeutic abilities of alkaloids to counteract breast cancer.


Asunto(s)
Alcaloides , Antiinfecciosos , Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Alcaloides/farmacología , Alcaloides/uso terapéutico , Antiinflamatorios/uso terapéutico , Antivirales/uso terapéutico , Antiinfecciosos/uso terapéutico , Hormonas
9.
Med Oncol ; 39(5): 61, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35478276

RESUMEN

Several studies have reported up-regulation of both cyclooxygenase-2 (COX-2) and DEAD-box RNA helicase3 (DDX3) and have validated their oncogenic role in many cancers. Inhibition of COX-2 and DDX3 offers a potential pharmacological strategy for prevention of cancer progression. The COX-2 isoform is expressed in response to pro-inflammatory stimuli in premalignant lesions, including cervical tissues. This study elucidates the potential role of plant derived compound Forskolin (FSK) in plummeting the expression of COX-2 and DDX3 in cervical cancer. To establish this, the cervical cancer cells were treated with the FSK compound which induced a dose dependent significant inhibition of COX-2 and DDX3 expression. The FSK treatment also significantly induced apoptosis in cancer cells by modulating the expression of apoptotic markers like caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, full length-poly ADP ribose polymerase (PARP), cleaved-poly ADP ribose polymerase (C-PARP) and Bcl2 in dose dependent manner. Further FSK significantly modulated the cell survival pathway Phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway upon 24 h of incubation in cervical cancer cells. The molecular docking studies revealed that the FSK engaged the active sites of both the targets by interacting with key residues.


Asunto(s)
Neoplasias del Cuello Uterino , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Colforsina , Ciclooxigenasa 2/metabolismo , ARN Helicasas DEAD-box , Femenino , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico
10.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163692

RESUMEN

Recently, the world has been witnessing a global pandemic with no effective therapeutics yet, while cancer continues to be a major disease claiming many lives. The natural compound curcumin is bestowed with multiple medicinal applications in addition to demonstrating antiviral and anticancer activities. In order to elucidate the impact of curcumin on COVID-19 and cancer, the current investigation has adapted several computational techniques to unfold its possible inhibitory activity. Accordingly, curcumin and similar compounds and analogues were retrieved and assessed for their binding affinities at the binding pocket of SARS-CoV-2 main protease and DDX3. The best binding pose was escalated to molecular dynamics simulation (MDS) studies to assess the time dependent stability. Our findings have rendered one compound that has demonstrated good molecular dock score complemented by key residue interactions and have shown stable MDS results inferred by root mean square deviation (RMSD), radius of gyration (Rg), binding mode, hydrogen bond interactions, and interaction energy. Essential dynamics results have shown that the systemadapts minimum energy conformation to attain a stable state. The discovered compound (curA) could act as plausible inhibitor against SARS-CoV-2 and DDX3. Furthermore, curA could serve as a chemical scaffold for designing and developing new compounds.


Asunto(s)
Curcumina/análogos & derivados , Curcumina/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Unión Proteica/efectos de los fármacos , SARS-CoV-2/patogenicidad , Tratamiento Farmacológico de COVID-19
11.
J Hazard Mater ; 427: 127939, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34893377

RESUMEN

Fipronil is a broad-spectrum insecticide widely used in agriculture and residential areas; its indiscriminate use leads to environmental pollution and poses health hazards. Early detection of fipronil is critical to prevent the deleterious effects. However, current insecticide analysis methods such as HPLC, LC/MS, and GC/MS are incompetent; they are costly, immobile, time-consuming, laborious, and need skilled technicians. Hence, a sensitive, specific, and cheap biosensor are essential to containing the contamination. Here, we designed two novel biosensors-the first design relied on fluorescent labeling/quenching, while the second sensor focused on label-free detection using Thioflavin T displacement. Altogether, we identified four candidate aptamers, predicted secondary structures, and performed 3D molecular modeling to predict the binding pocket of fipronil in FiPA6B aptamer. Furthermore, the aptameric sensors showed high sensitivity to fipronil of sub-ppb level LOD, attributed to stringent experimental design. The biosensors displayed high specificity against other phenylpyrazole insecticides and demonstrated robust sensitivity for fipronil in real samples like cabbage and cucumber. Notably, to the best of our knowledge, this is the first demonstration of noncanonical G4-quadruplex-like aptamer binding to fipronil, verified using CD spectroscopy. Such aptasensors possess considerable potential for real-time measurements of hazardous insecticides as point-of-care technology.


Asunto(s)
Técnicas Biosensibles , Insecticidas , ADN , Pirazoles
12.
Appl Biochem Biotechnol ; 194(1): 570-586, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34705247

RESUMEN

Cervical cancer is the second most common cause of cancer deaths in women worldwide and remains the main reason of mortality among women of reproductive age in developing countries. Nitric oxide is involved in several physiological functions inclusive of inflammatory and immune responses. However, the function of NO in tumor biology is debatable. The inducible NOS (iNOS/NOS2) isoform is the one responsible to maintain the levels of NO, and it exhibits pleotropic effects in various cancers with concentration-dependent pro- and anti-tumor effects. iNOS triggers angiogenesis and endothelial cell migration in tumors by regulating the levels of vascular endothelial growth factor (VEGF). In drug discovery, drug repurposing involves investigations of approved drug candidates to treat various other diseases. In this study, we used anti-cancer drugs and small molecules to target iNOS and identify a potential selective iNOS inhibitor. The structures of ligands were geometrically optimized and energy minimized using Hyperchem software. Molecular docking was performed using Molegro virtual docker, and ligands were selected based on MolDock score, Rerank score, and H-bonding energy. In the study shown, venetoclax compound demonstrated excellent binding affinity to iNOS protein. This compound exhibited the lowest MolDock score and Rerank score with better H-bonding energy to iNOS. The binding efficacy of venetoclax was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), radius of gyration (Rg), and hydrogen bond interactions. Based on the results, venetoclax emerges to be a promising potential iNOS inhibitor to curtail cervical cancer progression.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/química , Neoplasias del Cuello Uterino/enzimología , Antineoplásicos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico
13.
Front Oncol ; 11: 712824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485148

RESUMEN

BACKGROUND: Breast cancer is one of the major causes of mortalities noticed in women globally. DDX3 has emerged as a potent target for several cancers, including breast cancer to which currently there are no reported or approved drugs. METHODS: To find effective cancer therapeutics, three compounds were computationally designed tweaking the structure of natural compound butein. These compounds were synthesized and evaluated for their anticancer property in MCF-7 and MDA-MB-231 cell lines targeting DDX3. The in silico molecular docking studies have shown that the compounds have occupied the binding site of the human DDX3 target. Furthermore, to investigate the cell viability effect of 3a, 3b, and 3c on MCF-7 and MDA-MB-231 cell lines, the cell lines were treated with different concentrations of compounds for 24 and 48 h and measured using MTT assay. RESULTS: The cell viability results showed that the have induced dose dependent suppression of DDX3 expression. Additionally, 3b and 3c have reduced the expression of DDX3 in MCF-7 and MDA-MD-231 cell lines. 3b or 3c treated cell lines increased apoptotic protein expression. Both the compounds have induced the apoptotic cell death by elevated levels of cleaved PARP and cleaved caspase 3 and repression of the anti-apoptosis protein BCL-xL. Additionally, they have demonstrated the G2/M phase cell cycle arrest in both the cell lines. Additionally, 3c decreased PI3K and AKT levels. CONCLUSIONS: Our results shed light on the anticancer ability of the designed compounds. These compounds can be employed as chemical spaces to design new prospective drug candidates. Additionally, our computational method can be adapted to design new chemical scaffolds as plausible inhibitors.

14.
Comput Biol Med ; 135: 104525, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34252682

RESUMEN

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic. The virus that causes the disease, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), predominantly infects the respiratory tract, which may lead to pneumonia and death in severe cases. Many marine compounds have been found to have immense medicinal value and have gained approval from the Food and Drug Administration (FDA), and some are being tested in clinical trials. In the current investigation, we redirected a number of marine compounds toward SARS-CoV-2 by targeting the main protease (Mpro, PDB ID: 6Y2F), subjecting them to several advanced computational techniques using co-crystallised ligand as the reference compound. The results of the binding affinity studies showed that two compounds, eribulin mesylate (eri) and soblidotin (sob), displayed higher docking scores than did the reference compound. When these compounds were assessed using molecular dynamics simulation, it was evident that they demonstrated stable binding at the binding pocket of the target protein. The systems demonstrated stable root mean square deviation and radius of gyration values, while occupying the binding pocket during the simulation run. Furthermore, the essential dynamics and free energy landscape exploration revealed that the protein had navigated through a minimal energy basin and demonstrated favourable conformation while binding to the proposed inhibitors. Collectively, our findings suggest that two marine compounds, namely eri and sob, show potential as SARS-CoV-2 main protease inhibitors.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Organismos Acuáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias
15.
Front Mol Biosci ; 8: 655035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124147

RESUMEN

Protein-protein interactions are indispensable physiological processes regulating several biological functions. Despite the availability of structural information on protein-protein complexes, deciphering their complex topology remains an outstanding challenge. Raf kinase inhibitory protein (RKIP) has gained substantial attention as a favorable molecular target for numerous pathologies including cancer and Alzheimer's disease. RKIP interferes with the RAF/MEK/ERK signaling cascade by endogenously binding with C-Raf (Raf-1 kinase) and preventing its activation. In the current investigation, the binding of RKIP with C-Raf was explored by knowledge-based protein-protein docking web-servers including HADDOCK and ZDOCK and a consensus binding mode of C-Raf/RKIP structural complex was obtained. Molecular dynamics (MD) simulations were further performed in an explicit solvent to sample the conformations for when RKIP binds to C-Raf. Some of the conserved interface residues were mutated to alanine, phenylalanine and leucine and the impact of mutations was estimated by additional MD simulations and MM/PBSA analysis for the wild-type (WT) and constructed mutant complexes. Substantial decrease in binding free energy was observed for the mutant complexes as compared to the binding free energy of WT C-Raf/RKIP structural complex. Furthermore, a considerable increase in average backbone root mean square deviation and fluctuation was perceived for the mutant complexes. Moreover, per-residue energy contribution analysis of the equilibrated simulation trajectory by HawkDock and ANCHOR web-servers was conducted to characterize the key residues for the complex formation. One residue each from C-Raf (Arg398) and RKIP (Lys80) were identified as the druggable "hot spots" constituting the core of the binding interface and corroborated by additional long-time scale (300 ns) MD simulation of Arg398Ala mutant complex. A notable conformational change in Arg398Ala mutant occurred near the mutation site as compared to the equilibrated C-Raf/RKIP native state conformation and an essential hydrogen bonding interaction was lost. The thirteen binding sites assimilated from the overall analysis were mapped onto the complex as surface and divided into active and allosteric binding sites, depending on their location at the interface. The acquired information on the predicted 3D structural complex and the detected sites aid as promising targets in designing novel inhibitors to block the C-Raf/RKIP interaction.

16.
Biomed Pharmacother ; 141: 111808, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34175820

RESUMEN

Galangin, a non-toxic phytochemical is known to possess several therapeutic applications. Mounting evidences have demonstrated that galangin a naturally available flavonoid exerts anticancer effects via several mechanisms. The phytocompound induces apoptosis and renders antiangiogenic property. Additionally, galangin has demonstrated significate results in combating various cancer types when administered in combination with other phytocompounds or with gold nanoparticles (GNPs). The present article is a critical review of galangin for its treatment on different types of cancer and its usability as an alternative cancer therapeutics.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Flavonoides/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Oro , Humanos , Nanopartículas del Metal , Fitoterapia
17.
Front Chem ; 9: 636362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041221

RESUMEN

The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating effect globally with no effective treatment. The swift strategy to find effective treatment against coronavirus disease 2019 (COVID-19) is to repurpose the approved drugs. In this pursuit, an exhaustive computational method has been used on the DrugBank compounds targeting nsp16/nsp10 complex (PDB code: 6W4H). A structure-based pharmacophore model was generated, and the selected model was escalated to screen DrugBank database, resulting in three compounds. These compounds were subjected to molecular docking studies at the protein-binding pocket employing the CDOCKER module available with the Discovery Studio v18. In order to discover potential candidate compounds, the co-crystallized compound S-adenosyl methionine (SAM) was used as the reference compound. Additionally, the compounds remdesivir and hydroxycholoroquine were employed for comparative docking. The results have shown that the three compounds have demonstrated a higher dock score than the reference compounds and were upgraded to molecular dynamics simulation (MDS) studies. The MDS results demonstrated that the three compounds, framycetin, kanamycin, and tobramycin, are promising candidate compounds. They have represented a stable binding mode at the targets binding pocket with an average protein backbone root mean square deviation below 0.3 nm. Additionally, they have prompted the hydrogen bonds during the entire simulations, inferring that the compounds have occupied the active site firmly. Taken together, our findings propose framycetin, kanamycin, and tobramycin as potent putative inhibitors for COVID-19 therapeutics.

18.
ChemistryOpen ; 10(5): 593-599, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34010501

RESUMEN

Scientists all over the world are facing a challenging task of finding effective therapeutics for the coronavirus disease (COVID-19). One of the fastest ways of finding putative drug candidates is the use of computational drug discovery approaches. The purpose of the current study is to retrieve natural compounds that have obeyed to drug-like properties as potential inhibitors. Computational molecular modelling techniques were employed to discover compounds with potential SARS-CoV-2 inhibition properties. Accordingly, the InterBioScreen (IBS) database was obtained and was prepared by minimizing the compounds. To the resultant compounds, the absorption, distribution, metabolism, excretion and toxicity (ADMET) and Lipinski's Rule of Five was applied to yield drug-like compounds. The obtained compounds were subjected to molecular dynamics simulation studies to evaluate their stabilities. In the current article, we have employed the docking based virtual screening method using InterBioScreen (IBS) natural compound database yielding two compounds has potential hits. These compounds have demonstrated higher binding affinity scores than the reference compound together with good pharmacokinetic properties. Additionally, the identified hits have displayed stable interaction results inferred by molecular dynamics simulation results. Taken together, we advocate the use of two natural compounds, STOCK1N-71493 and STOCK1N-45683 as SARS-CoV-2 treatment regime.


Asunto(s)
Antivirales/metabolismo , Productos Biológicos/metabolismo , Inhibidores Enzimáticos/metabolismo , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacocinética , Productos Biológicos/farmacocinética , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacocinética , Metiltransferasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Programas Informáticos , Proteínas no Estructurales Virales/farmacocinética
19.
Artículo en Inglés | MEDLINE | ID: mdl-33897801

RESUMEN

Parkinson's disease is a common neurodegenerative disorder marked by the accumulation of the protein alpha synuclein. Studies have indicated the role of prolyl oligopeptidase (POP), a serine protease, in alpha synuclein accumulation. Therefore, POP emerges as an attractive medicinal target. Traditionally, most of the early medicines have been plant-based owing to their ready availability and negligible side effects. Alkaloids owing to their neurotransmitter modulatory, anti-amyloid, anti-oxidant, and anti-inflammatory activities have shown potential in neurodegenerative disease. In this work, we computationally evaluated alkaloid class of phytochemicals for their therapeutic efficacy against POP. Alkaloids were retrieved from the publically available database, Chemical Entities of Biological Interest (ChEBI), and screened for their drug likeness (Lipinski's rule of 5) and absorption, distribution, metabolism, and excretion, and toxicity (ADMET) in Discovery Studio by ensuring parameters suitable for a central nervous system disease such as blood-brain barrier (BBB) level set to ≤2, absorption level set to 0 and solubility level permitted set to 2, 3, or 4. Next, molecular docking was performed to learn about the affinity of the filtered alkaloids with the POP. Subsequently, molecular dynamic simulations were conducted to assess the reliability and stability of the alkaloid-protein complex. Our study identified metergoline, pipercallosine, celacinnine, lobeline, cystodytin G, lycoperine A, hookerianamide J, and martefragin A as putative lead compounds against POP. Among these, metergoline, pipercallosine, hookerianamide J, and lobeline showed the most promising results. These compounds demonstrated better or equivalent molecular docking scores in comparison to three POP inhibitors that had reached clinical trials, i.e., Z-321, S-17092, and JTP-4819. MD simulations indicated that these compounds remained intact at the active site while adhering to the binding mode and interaction patterns as that of the reported inhibitors. The research conducted here, therefore, provides evidence for conducting in vitro POP inhibitory studies of these newly identified plant-based POP inhibitors.

20.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801030

RESUMEN

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase portraying a quintessential role in cellular proliferation and survival. Aberrations in the mTOR signaling pathway have been reported in numerous cancers including thyroid, lung, gastric and ovarian cancer, thus making it a therapeutic target. To attain this objective, an in silico investigation was designed, employing a pharmacophore modeling approach. A structure-based pharmacophore (SBP) model exploiting the key features of a selective mTOR inhibitor, Torkinib directed at the ATP-binding pocket was generated. A Marine Natural Products (MNP) library was screened using SBP model as a query. The retrieved compounds after consequent drug-likeness filtration were subjected to molecular docking with mTOR, thus revealing four MNPs with better scores than Torkinib. Successive refinement via molecular dynamics simulations demonstrated that the hits formed crucial interactions with key residues of the pocket. Furthermore, the four identified hits exhibited good binding free energy scores through MM-PBSA calculations and the subsequent in silico toxicity assessments displayed three hits deemed essentially non-carcinogenic and non-mutagenic. The hits presented in this investigation could act as potent ATP-competitive mTOR inhibitors, representing a platform for the future discovery of drugs from marine natural origin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA