Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36768002

RESUMEN

RATIONALE: Common mental health disorders (CMD) (anxiety, depression, and sleep disorders) are among the leading causes of disease burden globally. The economic burden associated with such disorders is estimated at $2.4 trillion as of 2010 and is expected to reach $16 trillion by 2030. The UK has observed a 21-fold increase in the economic burden associated with CMD over the past decade. The recent COVID-19 pandemic was a catalyst for adopting technologies for mental health support and services, thereby increasing the reception of personal health data and wearables. Wearables hold considerable promise to empower users concerning the management of subclinical common mental health disorders. However, there are significant challenges to adopting wearables as a tool for the self-management of the symptoms of common mental health disorders. AIMS: This review aims to evaluate the potential utility of wearables for the self-management of sub-clinical anxiety and depressive mental health disorders. Furthermore, we seek to understand the potential of wearables to reduce the burden on the healthcare system. METHODOLOGY: a systematic review of research papers was conducted, focusing on wearable devices for the self-management of CMD released between 2018-2022, focusing primarily on mental health management using technology. RESULTS: We screened 445 papers and analysed the reports from 12 wearable devices concerning their device type, year, biometrics used, and machine learning algorithm deployed. Electrodermal activity (EDA/GSR/SC/Skin Temperature), physical activity, and heart rate (HR) are the most common biometrics with nine, six and six reference counts, respectively. Additionally, while smartwatches have greater penetration and integration within the marketplace, fitness trackers have the most significant public value benefit of £513.9 M, likely due to greater retention.


Asunto(s)
COVID-19 , Automanejo , Trastornos del Sueño-Vigilia , Dispositivos Electrónicos Vestibles , Humanos , Depresión/epidemiología , Depresión/terapia , Salud Mental , Pandemias , COVID-19/epidemiología , Ansiedad/epidemiología , Ansiedad/terapia , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/terapia
2.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298352

RESUMEN

Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent developments in the application of digital health for CVD, focusing on AI approaches for CVD detection, diagnosis, and prediction through AI models driven by data collected from wearables. We summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed by a detailed description of the dominant AI approaches applied for modelling and prediction using data acquired from sensors such as wearables. We discuss the AI algorithms and models and clinical applications and find that AI and machine-learning-based approaches are superior to traditional or conventional statistical methods for predicting cardiovascular events. However, further studies evaluating the applicability of such algorithms in the real world are needed. In addition, improvements in wearable device data accuracy and better management of their application are required. Lastly, we discuss the challenges that the introduction of such technologies into routine healthcare may face.


Asunto(s)
Enfermedades Cardiovasculares , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Enfermedades Cardiovasculares/diagnóstico , Aprendizaje Automático , Algoritmos
3.
Sensors (Basel) ; 21(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805794

RESUMEN

This paper examines the current state of the art of commercially available outdoor footfall sensor technologies and defines individually tailored solutions for the walking trails involved in an ongoing research project. Effective implementation of footfall sensors can facilitate quantitative analysis of user patterns, inform maintenance schedules and assist in achieving management objectives, such as identifying future user trends like cyclo-tourism. This paper is informed by primary research conducted for the EU funded project TrailGazersBid (hereafter referred to as TrailGazers), led by Donegal County Council, and has Sligo County Council and Causeway Coast and Glens Council (NI) among the 10 project partners. The project involves three trails in Ireland and five other trails from Europe for comparison. It incorporates the footfall capture and management experiences of trail management within the EU Atlantic area and desk-based research on current footfall technologies and data capture strategies. We have examined 6 individual types of sensor and discuss the advantages and disadvantages of each. We provide key learnings and insights that can help to inform trail managers on sensor options, along with a decision-making tool based on the key factors of the power source and mounting method. The research findings can also be applied to other outdoor footfall monitoring scenarios.


Asunto(s)
Conservación de los Recursos Naturales , Turismo , Caminata , Europa (Continente) , Irlanda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...