Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 10(12): 4308-4318, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514761

RESUMEN

Investigating the interaction of genotype and environment in multi-environment experiments (MET) is one of the reliable techniques to demonstrate the most stable and compatible cultivars. The main contribution of this study is to evaluate the stability and compatibility of rapeseed cultivars using additive main effects and multiplicative interaction (AMMI) and genotype plus genotype environment interaction (GGE) bi-plot methods for grain yield and oil content. For this purpose, an experiment in a randomized complete block design (RCBD) with three replications was conducted for 10 rapeseed cultivars across 10 environments (five regions in 2 years). Hence, the proposed technique can be used to identify the superior cultivars corresponding to the multivariant properties including yield and oil content. To do so, a case-study analysis was conducted over rapeseed, while more than 96% of the data variance for grain yield and more than 94% of the data variance for oil content were explained based on the AMMI model. According to the AMMI model, it was observed that the "Zarfam" and "Licord" genotypes were introduced as favorable genotypes for grain yield and oil content, respectively. "Karaj1" and "Sanandaj1" were selected as the superior environments for yield trait, "Kashmar2" for oil content, and "Licord" and "Kashmar2" were identified as the superior genotypes and environment for oil content, respectively. Graphical GGE bi-plot illustrated that "Hyola401," "Okapi," and "Sarigol" for grain yield and "Option500" and "Sunday" for oil content were identified as stable and high-yield genotypes. "Sanandaj1" for grain yield and "Karaj2" for oil content were identified as environments with high differentiation and screening power.

2.
Mol Biol Rep ; 49(1): 433-441, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34743274

RESUMEN

BACKGROUND: Soil drought stress is a limiting factor of productivity in walnut (Juglans regia L). Ferredoxin (Fd) level decreases under adverse environmental stress. Functional replacement of decreased Fd by Fld (Flavodoxin) had been shown to have protective effect under abiotic stress condition. This study aimed to evaluate four transgenic lines (L3, L4, L13 and L17) along with non-transgenic line under three osmotic stresses levels (0, 10 and 12% PEG). METHODS AND RESULTS: This experiment carried out based on a completely randomized design with four replications. To confirm that the Fld gene is successfully integrated into the walnut genome, PCR and dot blot analysis were carried out. The transgenic lines of walnut expressing Fld displayed increased tolerance to osmotic stress at 10 and 12% PEG condition. Lines expressing Fld exhibited increasing tolerance to drought stress and maintained health of plants under osmotic conditions. Results of real time PCR showed that expression level of Fld gene in L4 was higher than the others. Among transgenic lines, L4 was more tolerant than other lines under osmotic stress. CONCLUSIONS: These findings indicate that expression of Fld gene can increase tolerance to osmotic stress in Persian walnut and is useful tool for walnut production in arid and semi-arid regions.


Asunto(s)
Juglans/clasificación , Juglans/genética , Presión Osmótica , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Adaptación Biológica , Biomarcadores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Juglans/anatomía & histología , Fenotipo , Proteínas de Plantas/metabolismo
3.
Food Sci Nutr ; 8(10): 5340-5351, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33133537

RESUMEN

In order to investigate the interaction of genotype × trait and relationships among agronomic traits on 12 maize hybrids, an experiment was conducted in a randomized complete block design (RCBD) with three replicates in four regions of Karaj, Birjand, Shiraz, and Arak. Results of analysis of variance indicated that most of the genotypes were significantly different in terms of agronomic traits. Mean comparison by Duncan's method showed that KSC705 genotype was more favorable than other genotypes in all studied regions. SC604 genotype in Birjand and Karaj regions and KSC707 genotype in Shiraz region have higher rank than other genotypes. Correlation analysis was used to investigate the relationships between traits. In most of the studied regions, traits of number of grains in row and number of rows per ear were positively and significantly correlated with grain width and grain weight with grain yield. Graphical analysis was used to further investigate. Genotypes-trait interaction graph explained 59.27%, 61.22%, 59.17%, and 61.95% of total variance in Karaj, Birjand, Shiraz, and Arak, respectively. Based on the multivariate graph, KSC705, KSC706, and SC647 genotypes were identified as superior genotypes in all studied regions and KSC400 genotype did not show much response to change in traits. Correlation between grain width and number of rows in ear, plant height and grain length, one thousand grain weight and grain thickness, and ear diameter with number of grains in row was positive and significant. The results of classification graph of genotypes also divided the cultivars in to three groups as follows: KSC703, KSC400, and KSC706 genotypes in the first group; DC370, SC604, and SC301 in the second group; and KSC260, KSC704, KSC707, and SC301 in the third group.

4.
BMC Plant Biol ; 20(1): 136, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245410

RESUMEN

BACKGROUND: Flower development and sufficient fruit set are important parameters with respect to walnut yield. Knowledge about flowering genes of fruit trees can help to conduct better molecular breeding programs. Therefore, this study was carried out to investigate the expression pattern of some flowering genes (FT, SOC1, CAL, LFY and TFL1) in Persian walnut (cv. Chandler) during the growing season and winter dormancy. RESULTS: The results showed that walnut flower induction and initiation in Shahmirzad, Iran occurred in early June and late September, respectively. After meeting chilling and heat requirement, flower differentiation and anthesis occurred in late-March and mid-April to early-May, respectively. Study of flowering gene expression showed that the expression of the FT gene increased in three stages including before breaking of bud dormancy, from late March to late April (coincided with flower differentiation and anthesis) and from late May to mid-June (coincided with flower induction). Like FT, the expression of SOC1 gene increased during flower induction and initiation (mid-May to early-August) as well as flower anthesis (mid-April to early-May). LFY and CAL genes as floral meristem identity genes are activated by FT and SOC1 genes. In contrast with flowering stimulus genes, TFL1 showed overexpression during winter dormancy which prevented flowering. CONCLUSION: The expression of FT gene activated downstream floral meristem identity genes including SOC1, CAL and LFY which consequently led to release bud dormancy as well as flower anthesis and induction. Also, TFL1 as a flowering inhibitor gene in walnut showed overexpression during the bud dormancy. Chilling accumulation reduced TFL1 gene expression and increased the expression of flowering genes which ultimately led to overcome dormancy.


Asunto(s)
Flores/genética , Expresión Génica , Juglans , Flores/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Irán , Juglans/genética , Juglans/crecimiento & desarrollo , Juglans/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Proteínas de Plantas/genética , Reproducción/genética , Reproducción/fisiología , Estaciones del Año , Factores de Transcripción/metabolismo
5.
Physiol Mol Biol Plants ; 22(3): 391-398, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27729725

RESUMEN

A primary concern of modern plant breeding is that genetic diversity has decreased during the past century. This study set out to explore changes in genetic variation during 84 years of breeding by investigating the germination-related traits, inter-simple sequence repeat (ISSR) fingerprinting and osmotic stress tolerance of 30 Iranian wheat (Triticum aestivum L.) cultivars. Seeds were planted under control and osmotic stress (-2, -4 and -6 bar) in three replications. The ISSR experiment was carried out using 32 different primers. Genotypes were divided into two groups (old and new) each containing 15 members. The results of ANOVA showed that highly significant differences existed among genotypes and among growth conditions. The results showed that during breeding in some traits such as coleoptile length and seedling vigor index, a significant decrease has been occurred. New cultivars had a mean coleoptile length of 33 mm, shorter than that of old cultivars (42 mm) under osmotic stress of -6 bar. Genetic variance of root length, shoot length and seedling vigor index for old cultivars were 1.59, 1.93 and 45,763, respectively, significantly higher than those for new cultivars (0.55, 1.08 and 27,996, respectively). This difference was also verified by ISSR results as the polymorphism information content was 0.28 in old cultivars, higher than that of new cultivars (0.26). These results prove this claim that during breeding, genetic diversity has decreased for many germination-related traits and breeders are better to pay more attention to genetic diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...