Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124760

RESUMEN

Background: The most important factors contributing to multi-drug resistance in oral cancer include overexpression of the EGFR protein and the downstream malignancy regulators that are associated with it. This study investigates the impact of solanine on inflammation, proliferation, and angiogenesis inhibition in multidrug-resistant oral cancer KB-Chr-8-5 cells through inhibition of the EGFR/PI3K/Akt/NF-κB signaling pathway. Methods: Cell viability was assessed using an MTT assay to evaluate cytotoxic effects. Production of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨM), and AO/EtBr staining were analyzed to assess apoptosis and mitochondrial dysfunction. Western blotting was employed to examine protein expression related to angiogenesis, apoptosis, and signaling pathways. Experiments were conducted in triplicate. Results: Solanine treatment at concentrations of 10, 20, and 30 µM significantly increased ROS production, which is indicative of its antioxidant properties. This increase was associated with decreased mitochondrial membrane potential (ΔΨM) with p < 0.05, suggesting mitochondrial dysfunction. Inhibition of EGFR led to reduced activity of PI3K, Akt, and NF-κB, resulting in decreased expression of iNOS, IL-6, Cyclin D1, PCNA, VEGF, Mcl-1, and HIF-1α and increased levels of the apoptotic proteins Bax, caspase-9, and caspase-3. These changes collectively inhibited the growth of multidrug-resistant (MDR) cancer cells. Conclusions: Solanine acts as a potent disruptor of cellular processes by inhibiting the EGFR-mediated PI3K/Akt/NF-κB signaling pathway. These results suggest that solanine holds promise as a potential preventive or therapeutic agent against multidrug-resistant cancers.

2.
Ann Med ; 54(1): 2861-2875, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36263866

RESUMEN

Introduction: Phytochemicals have garnered much attention because they are useful in managing several human diseases. Yohimbine is one such phytochemical with significant pharmacological potential and could be exploited for research by medicinal chemists. It is an indole alkaloid obtained from various natural/synthetic sources.Aims and Results: The research on yohimbine started early, and its use as a stimulant and aphrodisiac by humans has been reported for a long time. The pharmacological activity of yohimbine is mediated by the combined action of the central and peripheral nervous systems. It selectively blocks the pre and postsynaptic α2-adrenergic receptors and has a moderate affinity for α1 and α2 subtypes. Yohimbine also binds to other behaviourally relevant monoaminergic receptors in the following order: α-2 NE > 5HT-1A>, 5HT-1B > 1-D > D3 > D2 receptors.Conclusion: The current review highlights some significant findings that contribute to developing yohimbine-based drugs. It also highlights the therapeutic potential of yohimbine against selected human diseases. However, further research is recommended on the pharmacokinetics, molecular mechanisms, and drug safety requirements using well-designed randomized clinical trials to produce yohimbine as a pharmaceutical agent for human use.Key MessagesYohimbine is a natural indole alkaloid with significant pharmacological potential.Humans have used it as a stimulant and aphrodisiac from a relatively early time.It blocks the pre- and postsynaptic α2-adrenergic receptors that could be exploited for managing erectile dysfunction, myocardial dysfunction, inflammatory disorders, and cancer.


Asunto(s)
Antagonistas Adrenérgicos alfa , Afrodisíacos , Masculino , Humanos , Yohimbina/farmacología , Yohimbina/uso terapéutico , Antagonistas Adrenérgicos alfa/farmacología , Receptores Adrenérgicos alfa 2/metabolismo , Preparaciones Farmacéuticas
3.
Life Sci ; 264: 118730, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33160994

RESUMEN

Reserpine is a natural indole alkaloid isolated from Rauwolfia serpentina and has potent antioxidant, antimicrobial, and anti-mutagenic properties. Accordingly, this study aimed to investigate the effect of reserpine on DNA repair, cell proliferation, invasion and apoptosis in 7,12-dimethylbenz[a]anthracene(DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Transforming growth factor-ß (TGF-ß) was found to induce Smad2, 3 and 4 phosphorylation triggering Smad3/Snail mediated DNA repair proteins and Smad2/4 nuclear translocation. In contrast, reserpine inhibits TGF-ß dependent Smad2/3/4 phosphorylation, thereby blockage Smad3/Snail activation and Smad2/4 nuclear translocation. Interruption of these oncogenic signaling pathways leads to downregulating ERCC1, XPF, Ku70, DNA-PKcs, PCNA, cyclin D1, HIF-1α, IL-6, Mcl-1 and stimulates Bax, cytochrome C, Apaf-1, caspase-9, caspase-3 and PARP protein expressions. This study provides therapeutic potential of reserpine in inhibiting DNA repair, cell proliferation, and invasion while simultaneously inducing apoptosis via modulation TGF-ß signals.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinogénesis/patología , Reparación del ADN/efectos de los fármacos , Neoplasias de la Boca/patología , Reserpina/farmacología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Carcinogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cricetinae , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Masculino , Simulación del Acoplamiento Molecular , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/patología , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Reserpina/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA