Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 382, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896329

RESUMEN

Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by rising global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to meet the increasing demand without affecting the source plant's existence. Currently, another strategy to increase camptothecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT production can be improved . KEY POINTS: • Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit DNA topoisomerase I. • Plants and endophytes offer a potential approach for camptothecin production. • Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production.


Asunto(s)
Biotecnología , Camptotheca , Camptotecina , Endófitos , Camptotecina/biosíntesis , Biotecnología/métodos , Endófitos/metabolismo , Endófitos/genética , Camptotheca/metabolismo , Antineoplásicos Fitogénicos/biosíntesis , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38797904

RESUMEN

INTRODUCTION: Two-phase hybrid mode thermal interface materials were created and characterized for mechanical properties, thermal conductivity, and wear behaviour. Therefore, the ultimate goal of this current research was to use alkali-treated glass fibre and other allotropes to produce high-performance two-phase thermal interface materials. METHOD: Three different polymer composites were prepared to contain 20 vol.% alkalies [NaOH] treated e-glass fibre [E] and epoxy as a matrix with varying proportions of multi-walled carbon nanotube [MWCNT], graphene [G], copper oxide [C]. The one-phase material contained epoxy+20%e-glass+1%MWCNT [EMGC1], the two-phase hybrid composite contained epoxy+20%e-glass+1%MWCNT+1%graphene+1%CuO [EMGC2], and two-phase material contained epoxy+20%e-glass+1%graphene+1%CuO [EMGC3]. Vacuum bagging method was used for fabricating the composites. RESULT: The higher thermal conductivity observed was 0.3466 W/mK for EMGC2, the alkali-treated glass fibre/hybrid mode nanofillers epoxy matrix composite was mechanically tougher than the other two composites [EMGC1 & EMGC3]. Scanning electron microscopy analysis revealed the fine filler dispersion and homogenous interaction with the glass fibre/epoxy resin composite of the upper and lower zone, which also revealed the defective zone, fibre elongation, fibre/filler breakages, and filler leached surfaces. CONCLUSION: Finally, it was concluded that the hybrid mode two-phased structure EMGC2 epoxy matrix composite replicated the maximum thermal conductivity, mechanical properties, and wear properties of the other two specimens.

3.
Plant Physiol Biochem ; 208: 108513, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38513519

RESUMEN

Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.


Asunto(s)
Resistencia a la Sequía , Oryza , Oryza/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fotosíntesis , Sequías , Polirribosomas/metabolismo , Estrés Fisiológico/genética
4.
Mol Plant Pathol ; 25(1): e13417, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279851

RESUMEN

Stability and delivery are major challenges associated with exogenous double-stranded RNA (dsRNA) application into plants. We report the encapsulation and delivery of dsRNA in cationic poly-aspartic acid-derived polymer (CPP6) into plant cells. CPP6 stabilizes the dsRNAs during long exposure at varied temperatures and pH, and protects against RNase A degradation. CPP6 helps dsRNA uptake through roots or foliar spray and facilitates systemic movement to induce endogenous gene silencing. The fluorescence of Arabidopsis GFP-overexpressing transgenic plants was significantly reduced after infiltration with gfp-dsRNA-CPP6 by silencing of the transgene compared to plants treated only with gfp-dsRNA. The plant endogenous genes flowering locus T (FT) and phytochrome interacting factor 4 (PIF4) were downregulated by a foliar spray of ft-dsRNA-CPP6 and pif4-dsRNA-CPP6 in Arabidopsis, with delayed flowering and enhanced biomass. The rice PDS gene targeted by pds-dsRNA-CPP6 through root uptake was effectively silenced and plants showed a dwarf and albino phenotype. The NaCl-induced OsbZIP23 was targeted through root uptake of bzip23-dsRNA-CPP6 and showed reduced transcripts and seedling growth compared to treatment with naked dsRNA. The negative regulators of plant defence SDIR1 and SWEET14 were targeted through foliar spray to provide durable resistance against bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Overall, the study demonstrates that transient silencing of plant endogenous genes using polymer-encapsulated dsRNA provides prolonged and durable resistance against Xoo, which could be a promising tool for crop protection and for sustaining productivity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Infecciones Bacterianas , ARN Bicatenario/farmacología , Arabidopsis/metabolismo , Silenciador del Gen , Infecciones Bacterianas/genética , Polímeros/metabolismo , Polímeros/farmacología , Enfermedades de las Plantas/microbiología , Interferencia de ARN , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Allergy ; 79(3): 656-666, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37846599

RESUMEN

BACKGROUND: Respiratory virus infections are main triggers of asthma exacerbations. Tezepelumab, an anti-TSLP mAb, reduces exacerbations in patients with asthma, but the effect of blocking TSLP on host epithelial resistance and tolerance to virus infection is not known. AIM: To examine effects of blocking TSLP in patients with asthma on host resistance (IFNß, IFNλ, and viral load) and on the airway epithelial inflammatory response to viral challenge. METHODS: Bronchoalveolar lavage fluid (BALF, n = 39) and bronchial epithelial cells (BECs) were obtained from patients with uncontrolled asthma before and after 12 weeks of tezepelumab treatment (n = 13) or placebo (n = 13). BECs were cultured in vitro and exposed to the viral infection mimic poly(I:C) or infected by rhinovirus (RV). Alarmins, T2- and pro-inflammatory cytokines, IFNß IFNλ, and viral load were analyzed by RT-qPCR and multiplex ELISA before and after stimulation. RESULTS: IL-33 expression in unstimulated BECs and IL-33 protein levels in BALF were reduced after 12 weeks of tezepelumab. Further, IL-33 gene and protein levels decreased in BECs challenged with poly(I:C) after tezepelumab whereas TSLP gene expression remained unaffected. Poly(I:C)-induced IL-4, IL-13, and IL-17A release from BECs was also reduced with tezepelumab whereas IFNß and IFNλ expression and viral load were unchanged. CONCLUSION: Blocking TSLP with tezepelumab in vivo in asthma reduced the airway epithelial inflammatory response including IL-33 and T2 cytokines to viral challenge without affecting anti-viral host resistance. Our results suggest that blocking TSLP stabilizes the bronchial epithelial immune response to respiratory viruses.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Asma , Virosis , Humanos , Bronquios , Citocinas/metabolismo , Inflamación , Interleucina-33 , Ensayos Clínicos Controlados como Asunto
6.
Physiol Plant ; 175(5): e13992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882292

RESUMEN

Water-saving attempts for rice cultivation often reduce yields. Maintaining productivity under drought is possible when rice genotypes are bred with improved metabolism and spikelet fertility. Although attempts have been made to introgress water mining and water use efficiency traits, combining acquired tolerance traits (ATTs), that is, specific traits induced or upregulated to better tolerate severe stress, appears equally important. In our study, we screened 90 rice germplasm accessions that represented the molecular and phenotypic variations of 851 lines of the 3 K rice panel. Utilising phenomics, we identified markers linked to ATTs through association analysis of over 0.2 million SNPs derived from whole-genome sequences. Propensity to respond to 'induction' stress varied significantly among genotypes, reflecting differences in cellular protection against oxidative stress. Among the ATTs, the hydroxyl radical and proline contents exhibited the highest variability. Furthermore, these significant variations in ATTs were strongly correlated with spikelet fertility. The 43 significant markers associated with ATTs were further validated using a different subset of contrasting genotypes. Gene expression studies and metabolomic profiling of two well-known contrasting genotypes, APO (tolerant) and IR64 (sensitive), identified two ATT genes: AdoMetDC and Di19. Our study highlights the relevance of polyamine biosynthesis in modulating ATTs in rice. Genotypes with superior ATTs and the associated markers can be effectively employed in breeding rice varieties with sustained spikelet fertility and grain yield under drought.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Sequías , Genotipo , Agua/metabolismo , Metaboloma
7.
Crit Rev Biotechnol ; 43(6): 884-903, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35968912

RESUMEN

Dangers confronting forest ecosystems are many and the strength of these biological systems is deteriorating, thus substantially affecting tree physiology, phenology, and growth. The establishment of genetically engineered trees into degraded woodlands, which would be adaptive to changing climate, could help in subsiding ecological threats and bring new prospects. This should not be resisted due to the apprehension of transgene dispersal in forests. Consequently, it is important to have a deep insight into the genetic structure and phenotypic limits of the reproductive capability of tree stands/population(s) to endure tolerance and survival. Importantly, for a better understanding of genes and their functional mechanisms, gene editing (GeEd) technology is an excellent molecular tool to unravel adaptation progressions. Therefore, GeEd could be harnessed for resolving the allelic interactions for the creation of gene diversity, and transgene dispersal may be alleviated among the population or species in different bioclimatic zones around the globe. This review highlights the potential of the CRISPR/Cas tools in genomic, transcriptomic, and epigenomic-based assorted and programmable alterations of genes in trees that might be able to fix the trait-specific gene function. Also, we have discussed the application of diverse forms of GeEd to genetically improve several traits, such as wood density, phytochemical constituents, biotic and abiotic stress tolerance, and photosynthetic efficiency in trees. We believe that the technology encourages fundamental research in the forestry sector besides addressing key aspects, which might fasten tree breeding and germplasm improvement programs worldwide.


Asunto(s)
Ecosistema , Edición Génica , Madera , Sistemas CRISPR-Cas/genética , Bosques , Árboles/genética , Genoma de Planta/genética
8.
BMC Plant Biol ; 22(1): 349, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850621

RESUMEN

BACKGROUND: The unprecedented drought and frequent occurrence of pathogen infection in rice is becoming more due to climate change. Simultaneous occurrence of stresses lead to more crop loss. To cope up multiple stresses, the durable resistant cultivars needs to be developed, by identifying relevant genes from combined biotic and abiotic stress exposed plants. RESULTS: We studied the effect of drought stress, bacterial leaf blight disease causing Xanthomonas oryzae pv. oryzae (Xoo) pathogen infection and combined stress in contrasting BPT5204 and TN1 rice genotypes. Mild drought stress increased Xoo infection irrespective of the genotype. To identify relevant genes that could be used to develop multi-stress tolerant rice, RNA sequencing from individual drought, pathogen and combined stresses in contrasting genotypes has been developed. Many important genes are identified from resistant genotype and diverse group of genes are differentially expressed in contrasting genotypes under combined stress. Further, a meta-analysis from individual drought and Xoo pathogen stress from public domain data sets narrowed- down candidate differentially expressed genes. Many translation associated genes are differentially expressed suggesting their extra-ribosomal function in multi-stress adaptation. Overexpression of many of these genes showed their relevance in improving stress tolerance in rice by different scientific groups. In combined stress, many downregulated genes also showed their relevance in stress adaptation when they were over-expressed. CONCLUSIONS: Our study identifies many important genes, which can be used as molecular markers and targets for genetic manipulation to develop durable resistant rice cultivars. Strategies should be developed to activate downregulated genes, to improve multi-stress tolerance in plants.


Asunto(s)
Oryza , Xanthomonas , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/microbiología , Transcriptoma , Xanthomonas/genética
9.
PLoS One ; 17(5): e0264917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35594245

RESUMEN

Nonhost disease resistance is the most common type of plant defense mechanism against potential pathogens. In the present study, the metabolic enzyme formate dehydrogenase 1 (FDH1) was identified to associate with nonhost disease resistance in Nicotiana benthamiana and Arabidopsis thaliana. In Arabidopsis, AtFDH1 was highly upregulated in response to both host and nonhost bacterial pathogens. The Atfdh1 mutants were compromised in nonhost resistance, basal resistance, and gene-for-gene resistance. The expression patterns of salicylic acid (SA) and jasmonic acid (JA) marker genes after pathogen infections in Atfdh1 mutant indicated that both SA and JA are involved in the FDH1-mediated plant defense response to both host and nonhost bacterial pathogens. Previous studies reported that FDH1 localizes to mitochondria, or both mitochondria and chloroplasts. Our results showed that the AtFDH1 mainly localized to mitochondria, and the expression level of FDH1 was drastically increased upon infection with host or nonhost pathogens. Furthermore, we identified the potential co-localization of mitochondria expressing FDH1 with chloroplasts after the infection with nonhost pathogens in Arabidopsis. This finding suggests the possible role of FDH1 in mitochondria and chloroplasts during defense responses against bacterial pathogens in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Enfermedades de las Plantas , Arabidopsis/enzimología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Resistencia a la Enfermedad/genética , Formiato Deshidrogenasas/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo , Nicotiana
10.
FEBS J ; 289(19): 6058-6077, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35445538

RESUMEN

Drought-induced abscisic acid (ABA) accumulation plays a key role in plant water relations by regulating stomatal movements. Although ABA helps in the survival of the plants, reduced carbon gain affects plant productivity. To improve crop productivity under mild drought stress conditions, it is necessary to manipulate ABA responses. Other research groups have used forward chemical genomics for the identification of ABA agonists and antagonists aiming to manipulate ABA biosynthesis and signalling. In the present study, we identified indolyl-ethyl amine and serotonin small molecules using a reverse chemical genomics approach, with these acting as potent inhibitors of ABA biosynthesis through transient regulation of bZIP23 transcription factor activity. In rice, wheat and soybean, each of the small molecules enhanced the germination of seeds, even in the presence of ABA. These molecules nullified the effect of ABA on intact and detached leaves, resulting in higher photosynthesis. Furthermore, these small molecules effectively reduced the transcription levels of bZIP23 targeting NCED4, PP2C49 and CO3 genes. Rice plants treated with the small molecules were found to have improved stomatal conductance, spikelet fertility and yield compared to untreated plants under mild drought stress conditions. Our results suggest that indolyl-ethyl amine and serotonin small molecules could be utilized to improve yield under mild drought conditions.


Asunto(s)
Ácido Abscísico , Oryza , Ácido Abscísico/farmacología , Carbono , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Fotosíntesis , Serotonina , Factores de Transcripción/genética , Agua/metabolismo
11.
Plant Physiol Biochem ; 162: 690-698, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33780742

RESUMEN

Drought significantly decreases crop productivity, especially in high water consuming crops like rice. Grain filling is one of the important critical growth phases in rice and drought during this phase leads to significant reduction in yield. In this study, a comparison was made between IR64 (drought susceptible) and Apo (drought tolerant) rice genotypes to capture the response to water limitation (50% field capacity (FC)) compared with the control (100%FC) during grain filling. Plants were grown in a high-throughput phenomics facility for precise imposition of moisture stress during grain filling. Apo performed better in water limited conditions with lower reduction of photosynthetic rate and maintenance of lower leaf temperature than IR64. Days from sowing to maturity, spikelet fertility and seed weight were more impeded by water limitation in IR64 than in Apo. Unlike Apo, IR64 did not show any decrease in transpiration rate at 50%FC compared with 100%FC. Metabolomic profiling of spikelets at grain filling showed distinct effects of water limitation on accumulation of metabolites, especially in Apo. Secondary metabolism, mainly the phenylpropanoid pathway involved in scavenging mechanisms, was upregulated in Apo. Accumulation of most amino acids was significantly higher in IR64 than in Apo. Due to higher rates of photosynthesis under stress, most carbohydrates accumulated more in Apo than in IR64 at 50%FC. Sucrose transporters were significantly upregulated in water limited conditions especially in Apo. Overall, thanks to higher source capacity, more source to sink transport and better scavenging, Apo showed a lower reduction in yield than IR64.


Asunto(s)
Oryza , Grano Comestible , Genotipo , Metaboloma , Oryza/genética , Agua
12.
Mol Biol Rep ; 48(1): 467-474, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394228

RESUMEN

The use of resistant (R) genes is the most effective strategy to manage bacterial leaf blight (BLB) disease of rice. Several attempts were made to incorporate R genes into susceptible rice cultivars using marker-assisted backcross breeding (MABB). However, MABB relies exclusively on PCR for foreground selection of R genes, which requires expensive equipment for thermo-cycling and visualization of results; hence, it is limited to sophisticated research facilities. Isothermal nucleic acid amplification techniques such as loop-mediated isothermal amplification (LAMP) assay do not require thermo-cycling during the assay. Therefore, it will be the best alternative to PCR-based genotyping. In this study, we have developed a LAMP assay for the specific and sensitive genotyping of seven BLB resistance (R) genes viz., Xa1, Xa3, Xa4, Xa7, Xa10, Xa11, and Xa21 in rice. Gene-specific primers were designed for the LAMP assay. The LAMP assay was optimized for time, temperature, and template DNA concentration. For effective detection, incubation at 60 °C for 30 min was optimum for all seven R genes. A DNA intercalating dye ethidium bromide and a calorimetric dye hydroxynaphthol blue was used for result visualization. Further, sensitivity assay revealed that the LAMP assay could detect R genes at 100 fg of template DNA compared to 1 ng and 10 pg, respectively, in conventional PCR and q-PCR assays. The LAMP assay developed in this study provides a simple, specific, sensitive, robust, and cost-effective method for foreground selection of R genes in the resistance breeding programs of resource-poor laboratory.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes prv/genética , Oryza/genética , Enfermedades de las Plantas/genética , Genotipo , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Oryza/crecimiento & desarrollo , Oryza/microbiología , Fitomejoramiento , Enfermedades de las Plantas/microbiología
13.
Plant Phenomics ; 2020: 5905371, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313560

RESUMEN

Drought tolerance is governed by constitutive and acquired traits. Combining them has relevance for sustaining crop productivity under drought. Mild levels of stress induce specific mechanisms that protect metabolism when stress becomes severe. Here, we report a comparative assessment of "acquired drought tolerance (ADT)" traits in two rice cultivars, IR64 (drought susceptible) and Apo (tolerant), and a drought-tolerant wheat cultivar, Weebill. Young seedlings were exposed to progressive concentrations of methyl viologen (MV), a stress inducer, before transferring to a severe concentration. "Induced" seedlings showed higher tolerance and recovery growth than seedlings exposed directly to severe stress. A novel phenomic platform with an automated irrigation system was used for precisely imposing soil moisture stress to capture ADT traits during the vegetative stage. Gradual progression of drought was achieved through a software-controlled automated irrigation facility. This facility allowed the maintenance of the same level of soil moisture irrespective of differences in transpiration, and hence, this platform provided the most appropriate method to assess ADT traits. Total biomass decreased more in IR64 than in Apo. The wheat cultivar showed lower levels of damage and higher recovery growth even compared to Apo. Expression of ROS-scavenging enzymes and drought-responsive genes was significantly higher in Apo than in IR64, but differences were only marginal between Apo and Weebill. The wheat cultivar showed significantly higher stomatal conductance, carbon gain, and biomass than the rice cultivars, under drought. These differences in ADT traits between cultivars as well as between species can be utilised for improving drought tolerance in crop plants.

14.
Int J Biometeorol ; 64(9): 1629-1634, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32415620

RESUMEN

Populus deltoides is a fast-growing woody species possessing plethora of industrial applications. This species evolutionarily developed unisexual male and female catkin inflorescence on separate trees. Flowering usually occurs during early spring before the development of foliage, where buds appear near axils or at the extending shoots. In 2019, surveys were undertaken to study the flowering pattern of P. deltoides in the states of Punjab, Haryana, Uttar Pradesh and Uttarakhand in northern India. Interestingly, an anomalous flowering behaviour (appearance of off-season male catkins during autumn, i.e. October) was observed in a plantation trial at Kapurthala, Punjab. The male catkins were 2.7-3.1 ± 0.07 cm long and 0.3-0.5 ± 0.03 cm wide, which is significant for flowering and liberation of pollen grains. Preliminary results suggested that climatic factors, such as episodes of high or low temperature and the precipitation variation forcing the tree species to behave differently. Unearthing the climate-driven off-season flowering in other tree species alluded the stimulation of phytohormones, such as gibberellic and salicylic acid concentrations influencing the flowering time, therefore, needs further investigation in case of P. deltoides. Overall, this work provides early clues of changing climatic scenario altering the flowering pattern of a tropical forestry tree species.


Asunto(s)
Populus , Cambio Climático , Flores , India , Estaciones del Año , Árboles
15.
Front Plant Sci ; 10: 193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30894866

RESUMEN

Due to climatic changes, rice crop is affected by moisture deficit stress and pathogens. Tissue water limitation besides reducing growth rates, also renders the crop susceptible to the infection by Xanthomonas oryzae pv. oryzae (Xoo) that causes bacterial leaf blight. Independently, both drought adaptation and Xoo resistance have been extensively studied. Though the cross-talk between drought and Xoo stress responses have been explored from individual stress studies, examining the combinatorial stress response is limited in rice. Recently published combined stress studies showed that under the combined stress, maintenance of carbon assimilation is hindered and such response is regulated by overlapping cellular mechanisms that are different from either of the individual stresses. Several receptors, MAP kinases, transcription factors, and ribosomal proteins, are predicted for playing a role in cellular homeostasis and protects cells from combined stress effects. Here we provide a critical analysis of these aspects using information from the recently published combined stress literature. This review is useful for researchers to comprehend combinatorial stress response of rice plants to drought and Xoo.

16.
Allergy ; 73(5): 1053-1063, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29319193

RESUMEN

BACKGROUND: Impaired antiviral interferon expression may be involved in asthma exacerbations commonly caused by rhinovirus infections. Allergy is a known risk factor for viral-induced asthma exacerbation, but little is known whether allergens may affect interferon responses. OBJECTIVE: Our hypothesis is that house dust mite (HDM) impairs viral stimulus-induced antiviral signalling. METHODS: Experimental asthma exacerbations were produced in vitro in human bronchial epithelial cells (HBECs) and in mice using sequential challenges with HDM and a viral infection mimic, Poly(I:C). We examined rhinovirus pattern recognition receptors (PRRs) signalling pathways and potential mechanisms of impaired interferon response. RESULTS: HBECs and mice exposed to HDM prior to Poly(I:C) exhibited a reduced antiviral response compared to Poly(I:C) alone, including reduced IFN-ß, IFN-λ, TLR3, RIG-I, MDA5, IRF-3 and IRF-7. Heat inactivation of HDM partially restored the TLR3-induced interferon response in vitro and in vivo. Our HBEC-data further showed that HDM directly affects TLR3 signalling by targeting the receptor glycosylation level. CONCLUSIONS: Direct effects of allergens such as HDM on PRRs can present as potential mechanism for defective antiviral airway responses. Accordingly, therapeutic measures targeting inhibitory effects of allergens on antiviral PRRs may find use as a strategy to boost antiviral response and ameliorate exacerbations in asthmatic patients.


Asunto(s)
Asma/inmunología , Interferones/biosíntesis , Infecciones por Picornaviridae/inmunología , Pyroglyphidae/inmunología , Receptor Toll-Like 3/inmunología , Animales , Asma/virología , Células Cultivadas , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Hipersensibilidad/inmunología , Inductores de Interferón/inmunología , Interferones/inmunología , Ratones , Ratones Endogámicos C57BL , Infecciones por Picornaviridae/complicaciones , Poli I-C/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Rhinovirus
17.
Clin Exp Allergy ; 48(2): 156-166, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29210131

RESUMEN

BACKGROUND: The respiratory epithelium is a major site for disease interaction with inhaled allergens. Additional to IgE-dependent effects, allergens contain proteases that may stimulate human bronchial epithelial cells (HBECs) through protease-activated receptors, causing the release of mediators important in driving Th2-mediated immune responses. OBJECTIVE: We aimed to investigate whether different allergens induce metabolite DAMPs such as ATP and uric acid (UA) release in HBECs. METHODS: HBECs (BEAS-2B cell line) were exposed to different allergen extracts; house dust mite (HDM), Alternaria alternata, Artemisia vulgaris and Betula pendula and UA, ATP, IL-8 and IL-33 release were measured. Allergen extracts were heat-inactivated or pre-incubated with serine (AEBSF) or cysteine (E64) protease inhibitors to study the involvement of protease activity in ATP, UA and IL-8 release. HDM-induced release of UA was studied in a mouse model of allergic inflammation. RESULTS: All allergens caused dose-dependent rapid release of ATP and IL-8, but only HDM induced UA release from HBECs. HDM also caused release of UA in vivo in our mouse model of allergic inflammation. ATP release by all 4 allergen extracts was significantly reduced by heat-inactivation and by serine protease inhibitors. Similarly, the HDM-induced UA release was also abrogated by heat-inactivation of HDM extract and dependent on serine proteases. Furthermore, allergen-induced IL-8 mRNA expression was inhibited by serine protease inhibitors. CONCLUSIONS AND CLINICAL RELEVANCE: ATP was released by all 4 allergens in HBECs supporting the role of ATP involvement in asthma pathology. However, HDM stands out by its capacity to cause UA release, which is of interest in view of the proposed role of UA in early initiation of allergic asthma. Although serine proteases may be involved in the activity of all the studied allergens, further work is warranted to explain the differences between HDM and the other 3 allergens regarding the effects on UA release.


Asunto(s)
Alarminas/biosíntesis , Alérgenos/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Serina Proteasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos Dermatofagoides/inmunología , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Células Epiteliales/metabolismo , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Ratones
19.
Rice (N Y) ; 10(1): 11, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28409435

RESUMEN

BACKGROUND: Maintenance of seed viability is an important factor for seedling vigour and plant establishment. Lipid peroxidation mediated reactive carbonyl compounds (RCC's) and non-enzymatic modifications of proteins through Maillard and Amadori products reduce seed viability and seedling vigour. RESULTS: In this study, the relevance of RCCs on genotypic variation in rice seed viability and overexpression of an aldo-ketoreductase (AKR1) enzyme that detoxify cytotoxic compounds to improve seed viability and vigour was studied. Physiological and biochemical approaches were integrated to quantify the variation in seed viability and seedling vigour in rice genotypes after exposing to ageing treatment. AKR1 was overexpressed in a susceptible rice genotype and tobacco to study the relevance of reduced RCC's on seed viability and seedling vigour. The glycation and lipid peroxidation compounds accumulated after accelerated ageing treatments in rice genotypes. The accumulation of malondialdehyde, methyl glyoxal, Maillard and Amadori products affected the seed viability and germination as they showed a significant negative relationship. The transgenic rice and tobacco seeds expressing AKR1 showed lower levels of cytotoxic compounds and glycation products that resulted in improved seed viability and seedling vigour in rice and tobacco. CONCLUSIONS: The study demonstrates that, reactive cytotoxic compounds affect the seed viability during storage. Detoxification of reactive cytotoxic compounds by Aldo-keto reductases is one of the mechanisms to improve the seed longevity during storage.

20.
Plant Physiol Biochem ; 113: 177-186, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28222349

RESUMEN

Cytotoxic compounds like reactive carbonyl compounds such as methylglyoxal (MG), melandialdehyde (MDA), besides the ROS accumulate significantly at higher levels under salinity stress conditions and affect lipids and proteins that inhibit plant growth and productivity. The detoxification of these cytotoxic compounds by overexpression of NADPH-dependent Aldo-ketoreductase (AKR1) enzyme enhances the salinity stress tolerance in tobacco. The PsAKR1 overexpression plants showed higher survival and chlorophyll content and reduced MDA, H2O2, and MG levels under NaCl stress. The transgenic plants showed reduced levels of Na+ levels in both root and shoot due to reduced reactive carbonyl compounds (RCCs) and showed enhanced membrane stability resulted in higher root growth and biomass. The increased levels of antioxidant glutathione and enhanced activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) suggest AKR1 could protect these enzymes from the RCC induced protein carbonylation by detoxification process. The transgenics also showed higher activity of delta 1-pyrroline-5- carboxylate synthase (P5CS) enzyme resulted in increasedproline levels to maintain osmotic homeostasis. The results demonstrates that the AKR1 protects proteins or enzymes that are involved in scavenging of cytotoxic compounds by detoxifying RCCs generated under salinity stress.


Asunto(s)
Nicotiana/enzimología , Oxidorreductasas/metabolismo , Plantas Tolerantes a la Sal/fisiología , Aldehído Deshidrogenasa/metabolismo , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Biomasa , Clorofila/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Presión Osmótica , Oxidorreductasas/biosíntesis , Oxidorreductasas/genética , Fotosíntesis , Plantas Modificadas Genéticamente , Prolina/metabolismo , Piruvaldehído/metabolismo , Salinidad , Estrés Fisiológico/fisiología , Superóxido Dismutasa/metabolismo , Nicotiana/genética , Nicotiana/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...