Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e11030, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38357596

RESUMEN

Plant invasions can have major impacts on ecosystems, both above- and belowground. In particular, invasions by legumes, which often host nitrogen-fixing symbionts (rhizobia), are known to modify soil bacterial communities. Here, we examined the effect of the invasive herbaceous legume Lupinus polyphyllus on the alpha diversity and community composition of soil bacteria. We also explored the relationships between these bacterial communities and vegetation cover, the cover of other (non-invasive) legumes, or the number of vascular plants present. For this, we sampled rhizosphere soil and surveyed vegetation from ten paired sites (uninvaded versus invaded more than 10 years ago) in southwestern Finland, and identified bacterial DNA using 16S rRNA gene amplicon sequencing. The presence of the plant invader and the three vegetation variables considered had no effect on the alpha diversity of soil bacteria in terms of bacterial richness or Shannon and Inverse Simpson diversity indices. However, the composition of soil bacterial communities differed between invaded and uninvaded soils at four out of the ten sites. Interestingly, the relative abundances of the top bacterial families in invaded and uninvaded soils were inconsistent across sites, including for legume-associated rhizobia in the family Bradyrhizobiaceae. Other factors-such as vegetation cover, legume cover (excluding L. polyphyllus), number of plant species-also explained a small proportion of the variation in bacterial community composition. Our findings indicate that L. polyphyllus has the potential to modify the composition of local soil bacterial community, at least in sites where it has been present for more than a decade.

2.
J Environ Manage ; 324: 116374, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352726

RESUMEN

A collective understanding of economic impacts and in particular of monetary costs of biological invasions is lacking for the Nordic region. This paper synthesizes findings from the literature on costs of invasions in the Nordic countries together with expert elicitation. The analysis of cost data has been made possible through the InvaCost database, a globally open repository of monetary costs that allows for the use of temporal, spatial, and taxonomic descriptors facilitating a better understanding of how costs are distributed. The total reported costs of invasive species across the Nordic countries were estimated at $8.35 billion (in 2017 US$ values) with damage costs significantly outweighing management costs. Norway incurred the highest costs ($3.23 billion), followed by Denmark ($2.20 billion), Sweden ($1.45 billion), Finland ($1.11 billion) and Iceland ($25.45 million). Costs from invasions in the Nordics appear to be largely underestimated. We conclude by highlighting such knowledge gaps, including gaps in policies and regulation stemming from expert judgment as well as avenues for an improved understanding of invasion costs and needs for future research.


Asunto(s)
Países Escandinavos y Nórdicos , Noruega , Islandia , Finlandia , Suecia
3.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34355467

RESUMEN

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Asunto(s)
Máscaras , Plantago , Adaptación Fisiológica , Biomasa , Fenotipo
4.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32034102

RESUMEN

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Asunto(s)
Flujo Génico , Variación Genética , Plantago/genética , Demografía , Especies Introducidas , Filogenia , Plantago/química
5.
Ecol Evol ; 10(24): 13742-13751, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391677

RESUMEN

Introduced species, which establish in novel environments, provide an opportunity to explore trait evolution and how it may contribute to the distribution and spread of species. Here, we explore trait changes of the perennial herb Lupinus polyphyllus based on 11 native populations in the western USA and 17 introduced populations in Finland. More specifically, we investigated whether introduced populations outperformed native populations in traits measured in situ (seed mass) and under common garden conditions during their first year (plant size, flowering probability, and number of flowering shoots). We also explored whether climate of origin (temperature) influenced plant traits and quantified the degree to which trait variability was explained collectively by country and temperature as compared to other population-level differences. Three out of four plant traits differed between the native and introduced populations; only seed mass was similar between countries, with most of its variation attributed to other sources of intraspecific variation not accounted for by country and temperature. Under common garden conditions, plants originating from introduced populations were larger than those originating from native populations. However, plants from the introduced range flowered less frequently and had fewer flowering shoots than their native-range counterparts. Temperature of a population's origin influenced plant size in the common garden, with plant size increasing with increasing mean annual temperature in both native and introduced populations. Our results of the first year reveal genetic basis for phenotypic differences in some fitness-related traits between the native and introduced populations of L. polyphyllus. However, not all of these trait differences necessarily contribute to the invasion success of the species and thus may not be adaptive, which raises a question how persistent the trait differences observed in the first year are later in individuals' life for perennial herbs.

6.
Ecology ; 100(5): e02667, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30913306

RESUMEN

Biomass removal by herbivores usually incurs a fitness cost for the attacked plants, with the total cost per unit lost tissue depending on the value of the removed tissue (i.e., how costly it is to be replaced by regrowth). Optimal defense theory, first outlined in the 1960s and 1970s, predicted that these fitness costs result in an arms race between plants and herbivores, in which selection favors resistance strategies that either repel herbivores through morphological and chemical resistance traits in order to reduce their consumption, or result in enemy escape through rapid growth or by timing the growth or flowering to the periods when herbivores are absent. Such resistance against herbivores would most likely evolve when herbivores are abundant, cause extensive damage, and consume valuable plant tissues. The purpose of this Special Feature is to celebrate the 30th anniversary of the phenomenon of overcompensation, specifically, where the finding has brought us and where it is leading us 30 yr later. We first provide a short overview of how the phenomenon of overcompensation has led to broader studies on plant tolerance to herbivory, summarize key findings, and then discuss some promising new directions in light of six featured research papers.


Asunto(s)
Herbivoria , Plantas , Biomasa , Fenotipo
7.
Oecologia ; 188(1): 129-138, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29858692

RESUMEN

Intermittent breeding may be adaptive for long-lived species subjected to large accessory reproductive costs, but it may also reflect reduced adaptation to the environment, reducing population growth. Nevertheless, environmental influences on breeding propensity, particularly that of predation risk, remain poorly understood and difficult to study, because non-breeders are typically not identified. Female eiders Somateria mollissima from the Baltic Sea provide an excellent testbed, because nesting females have been exposed to intensifying predation and growing male bias that may increase female harassment. We based our study on long-term data (14 years) on females captured and marked at the nest, and females individually identified at sea irrespective of capture status. We hypothesized that breeding propensity decreases with increasing predation risk and male bias, and increases with breeder age. Consistent with our hypotheses, females nesting on islands with higher nest predation risk were more likely to skip breeding, and breeding probability increased with age. In contrast, the steep temporal decline in breeding propensity could not be reliably attributed to annual adult sex ratio or to the abundance of white-tailed sea eagles (Haliaeetus albicilla), the main predator on females, at the nearby Hanko Bird Observatory. Breeding probability showed significant consistent individual variation. Our results demonstrate that spatiotemporal variation in predation risk affects the decision to breed and high incidence of non-breeding was associated with low fledging success. The increased frequency of intermittent breeding in this declining population should be explicitly considered in demographic models, and emphasis placed on understanding the preconditions for successful reproduction.


Asunto(s)
Cruzamiento , Conducta Predatoria , Animales , Aves , Patos , Femenino , Masculino , Reproducción
8.
PLoS One ; 13(4): e0195415, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29634733

RESUMEN

In contrast to theoretical predictions of even adult sex ratios, males are dominating in many bird populations. Such bias among adults may be critical to population growth and viability. Nevertheless, demographic mechanisms for biased adult sex ratios are still poorly understood. Here, we examined potential demographic mechanisms for the recent dramatic shift from a slight female bias among adult eider ducks (Somateria mollissima) to a male bias (about 65% males) in the Baltic Sea, where the species is currently declining. We analysed a nine-year dataset on offspring sex ratio at hatching based on molecularly sexed ducklings of individually known mothers. Moreover, using demographic data from long-term individual-based capture-recapture records, we investigated how sex-specific survival at different ages after fledgling can modify the adult sex ratio. More specifically, we constructed a stochastic two-sex matrix population model and simulated scenarios of different survival probabilities for males and females. We found that sex ratio at hatching was slightly female-biased (52.8%) and therefore unlikely to explain the observed male bias among adult birds. Our stochastic simulations with higher survival for males than for females revealed that despite a slight female bias at hatching, study populations shifted to a male-biased adult sex ratio (> 60% males) in a few decades. This shift was driven by prime reproductive-age individuals (≥5-year-old), with sex-specific survival of younger age classes playing a minor role. Hence, different age classes contributed disproportionally to population dynamics. We argue that an alternative explanation for the observed male dominance among adults-sex-biased dispersal-can be considered redundant and is unlikely, given the ecology of the species. The present study highlights the importance of considering population structure and age-specific vital rates when assessing population dynamics and management targets.


Asunto(s)
Patos/genética , Patos/fisiología , Caracteres Sexuales , Razón de Masculinidad , Animales , Femenino , Masculino , Dinámica Poblacional , Reproducción/fisiología , Procesos Estocásticos , Análisis de Supervivencia
9.
Ecology ; 99(4): 915-925, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29380874

RESUMEN

Temperature and precipitation determine the conditions where plant species can occur. Despite their significance, to date, surprisingly few demographic field studies have considered the effects of abiotic drivers. This is problematic because anticipating the effect of global climate change on plant population viability requires understanding how weather variables affect population dynamics. One possible reason for omitting the effect of weather variables in demographic studies is the difficulty in detecting tight associations between vital rates and environmental drivers. In this paper, we applied Functional Linear Models (FLMs) to long-term demographic data of the perennial wildflower, Astragalus scaphoides, and explored sensitivity of the results to reduced amounts of data. We compared models of the effect of average temperature, total precipitation, or an integrated measure of drought intensity (standardized precipitation evapotranspiration index, SPEI), on plant vital rates. We found that transitions to flowering and recruitment in year t were highest if winter/spring of year t was wet (positive effect of SPEI). Counterintuitively, if the preceding spring of year t - 1 was wet, flowering probabilities were decreased (negative effect of SPEI). Survival of vegetative plants from t - 1 to t was also negatively affected by wet weather in the spring of year t - 1 and, for large plants, even wet weather in the spring of t - 2 had a negative effect. We assessed the integrated effect of all vital rates on life history performance by fitting FLMs to the asymptotic growth rate, log(λt). Log(λt) was highest if dry conditions in year t - 1 were followed by wet conditions in the year t. Overall, the positive effects of wet years exceeded their negative effects, suggesting that increasing frequency of drought conditions would reduce population viability of A. scaphoides. The drought signal weakened when reducing the number of monitoring years. Substituting space for time did not recover the weather signal, probably because the weather variables varied little between sites. We detected the SPEI signal when the analysis included data from two sites monitored over 20 yr (2 × 20 observations), but not when analyzing data from four sites monitored over 10 yr (4 × 10 observations).


Asunto(s)
Sequías , Tiempo (Meteorología) , Cambio Climático , Demografía , Plantas
10.
Ecology ; 99(2): 259-269, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205298

RESUMEN

As a compensatory response to herbivory, plants may branch vigorously when the growth of dormant meristems is triggered by shoot damage. Undamaged plants, on the other hand, often restrain branching, and this limitation on growth can be considered a cost of tolerance to herbivory. Restrained branching is caused by apical dominance and may, alternatively, be associated with fitness benefits in competitive environments that favor fast vertical growth. To test these hypotheses regarding selection for restrained branching, we compared the performance of two subspecies of the biennial grassland herb Gentianella campestris; the tall, apically dominant ssp. campestris and the short, multi-stemmed ssp. islandica, which shows reduced apical dominance. For both subspecies, we manipulated the height of surrounding vegetation (competition) and damage intensity in grasslands of differing productivity (high, medium, low), and examined population growth rates using matrix population models combined with life table response experiments. In the absence of damage, ssp. campestris exhibited a higher population growth rate than ssp. islandica in the tallest vegetation, however with the growth rate still being below one. In the medium and low productivity environments where the vegetation was shorter, the population growth rate of ssp. islandica was considerably higher than that of ssp. campestris as long as no more than about 50% of the plants were damaged. When plants were damaged, the apically dominant ssp. campestris showed a positive population growth rate (λ > 1) and often overcompensatory seed production in all productivity levels, while ssp. islandica showed no compensation and therefore the population was predicted to decline (λ < 1). We conclude that restrained branching in Gentianella cannot be selected for by competition alone, but that episodes of apical damage are required to maintain the trait. Furthermore, because of the costs of restrained branching, apical dominance should be selected against in grasslands where competition and disturbance are low.


Asunto(s)
Asteraceae , Gentianella , Herbivoria , Meristema , Semillas
11.
Ann Bot ; 117(1): 187-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26420202

RESUMEN

BACKGROUND AND AIMS: Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. METHODS: Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. KEY RESULTS: It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. CONCLUSIONS: The study suggests that although genetic variation may facilitate plant invasions by increasing seedling establishment, it may not necessarily affect the long-term population growth rate. Therefore, established invasions may be able to grow equally well regardless of their genetic diversity.


Asunto(s)
Variación Genética , Especies Introducidas , Lupinus/crecimiento & desarrollo , Lupinus/genética , Plantones/crecimiento & desarrollo , Plantones/genética , Alelos , Ecosistema , Densidad de Población , Dinámica Poblacional
12.
Oecologia ; 174(4): 1255-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24390414

RESUMEN

Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.


Asunto(s)
Especies Introducidas , Lupinus/fisiología , Ecosistema , Fertilidad , Finlandia , Modelos Lineales
13.
Mol Ecol Resour ; 13(4): 760-2, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23693143

RESUMEN

This article documents the addition of 142 microsatellite marker loci to the Molecular Ecology Resources database. Loci were developed for the following species: Agriophyllum squarrosum, Amazilia cyanocephala, Batillaria attramentaria, Fungal strain CTeY1 (Ascomycota), Gadopsis marmoratus, Juniperus phoenicea subsp. turbinata, Liriomyza sativae, Lupinus polyphyllus, Metschnikowia reukaufii, Puccinia striiformis and Xylocopa grisescens. These loci were cross-tested on the following species: Amazilia beryllina, Amazilia candida, Amazilia rutila, Amazilia tzacatl, Amazilia violiceps, Amazilia yucatanensis, Campylopterus curvipennis, Cynanthus sordidus, Hylocharis leucotis, Juniperus brevifolia, Juniperus cedrus, Juniperus osteosperma, Juniperus oxycedrus, Juniperus thurifera, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza huidobrensis and Liriomyza trifolii.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Repeticiones de Microsatélite , Animales , Abejas/genética , Aves/genética , Peces/genética , Hongos/genética , Plantas/genética
14.
Ecol Lett ; 13(9): 1182-97, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20561015

RESUMEN

Explaining variation in population growth rates is fundamental to predicting population dynamics and population responses to environmental change. In this study, we used matrix population models, which link birth, growth and survival to population growth rate, to examine how and why population growth rates vary within and among 50 terrestrial plant species. Population growth rates were more similar within species than among species; with phylogeny having a minimal influence on among-species variation. Most population growth rates decreased over the observation period and were negatively autocorrelated between years; that is, higher than average population growth rates tended to be followed by lower than average population growth rates. Population growth rates varied more through time than space; this temporal variation was due mostly to variation in post-seedling survival and for a subset of species was partly explained by response to environmental factors, such as fire and herbivory. Stochastic population growth rates departed from mean matrix population growth rate for temporally autocorrelated environments. Our findings indicate that demographic data and models of closely related plant species cannot necessarily be used to make recommendations for conservation or control, and that post-seedling survival and the sequence of environmental conditions are critical for determining plant population growth rate.


Asunto(s)
Desarrollo de la Planta , Ecosistema , Modelos Biológicos , Filogenia , Plantas/clasificación , Plantas/genética , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie , Procesos Estocásticos
15.
Ann Bot ; 92(2): 207-13, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12814954

RESUMEN

Seed production and patterns of sex allocation were studied in female and hermaphroditic plants in two gynodioecious populations of Geranium sylvaticum (Geraniaceae). Females produced more flower buds and seeds than hermaphrodites in one of the two study populations. The other female traits measured (pistil biomass, seed number per fruit, individual seed mass) did not differ between the gender morphs. The relative seed fitness of hermaphrodites differed between the study populations, with hermaphrodites gaining less of their fitness through female function in the population with a high frequency of females. However, the amount and size of pollen produced by hermaphrodites did not differ between populations. The number of flower buds was positively correlated with seed production in females, whereas in hermaphrodites a positive correlation between number of buds and seed production was found in only one of the two study populations. These results suggest that fitness gain through female function is labile in hermaphrodites of this species, and is probably affected by environmental factors such as the sex ratio of the population.


Asunto(s)
Flores/fisiología , Geranium/fisiología , Flores/anatomía & histología , Geranium/anatomía & histología , Reproducción , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...