Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vis Comput Ind Biomed Art ; 4(1): 25, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34618260

RESUMEN

Acral melanoma (AM) is a rare and lethal type of skin cancer. It can be diagnosed by expert dermatologists, using dermoscopic imaging. It is challenging for dermatologists to diagnose melanoma because of the very minor differences between melanoma and non-melanoma cancers. Most of the research on skin cancer diagnosis is related to the binary classification of lesions into melanoma and non-melanoma. However, to date, limited research has been conducted on the classification of melanoma subtypes. The current study investigated the effectiveness of dermoscopy and deep learning in classifying melanoma subtypes, such as, AM. In this study, we present a novel deep learning model, developed to classify skin cancer. We utilized a dermoscopic image dataset from the Yonsei University Health System South Korea for the classification of skin lesions. Various image processing and data augmentation techniques have been applied to develop a robust automated system for AM detection. Our custom-built model is a seven-layered deep convolutional network that was trained from scratch. Additionally, transfer learning was utilized to compare the performance of our model, where AlexNet and ResNet-18 were modified, fine-tuned, and trained on the same dataset. We achieved improved results from our proposed model with an accuracy of more than 90 % for AM and benign nevus, respectively. Additionally, using the transfer learning approach, we achieved an average accuracy of nearly 97 %, which is comparable to that of state-of-the-art methods. From our analysis and results, we found that our model performed well and was able to effectively classify skin cancer. Our results show that the proposed system can be used by dermatologists in the clinical decision-making process for the early diagnosis of AM.

2.
Microsc Res Tech ; 84(12): 3023-3034, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34245203

RESUMEN

With the evolution of deep learning technologies, computer vision-related tasks achieved tremendous success in the biomedical domain. For supervised deep learning training, we need a large number of labeled datasets. The task of achieving a large number of label dataset is a challenging. The availability of data makes it difficult to achieve and enhance an automated disease diagnosis model's performance. To synthesize data and improve the disease diagnosis model's accuracy, we proposed a novel approach for the generation of images for three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. The proposed model out-perform in synthesis of brain positron emission tomography images for all three stages of Alzheimer disease. The three-stage of Alzheimer's disease is normal control, mild cognitive impairment, and Alzheimer's disease. The model performance is measured using a classification model that achieved an accuracy of 72% against synthetic images. We also experimented with quantitative measures, that is, peak signal-to-noise (PSNR) and structural similarity index measure (SSIM). We achieved average PSNR score values of 82 for AD, 72 for CN, and 73 for MCI and SSIM average score values of 25.6 for AD, 22.6 for CN, and 22.8 for MCI.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Tomografía de Emisión de Positrones
3.
J Med Virol ; 93(7): 4382-4391, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33782990

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has spread around the globe very rapidly. Previously, the evolution pattern and similarity among the COVID-19 causative organism severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causative organisms of other similar infections have been determined using a single type of genetic marker in different studies. Herein, the SARS-CoV-2 and related ß coronaviruses Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV,  bat coronavirus (BAT-CoV) were comprehensively analyzed using a custom-built pipeline that employed phylogenetic approaches based on multiple types of genetic markers including the whole genome sequences, mutations in nucleotide sequences, mutations in protein sequences, and microsatellites. The whole-genome sequence-based phylogeny revealed that the strains of SARS-CoV-2 are more similar to the BAT-CoV strains. The mutational analysis showed that on average MERS-CoV and BAT-CoV genomes differed at 134.21 and 136.72 sites, respectively, whereas the SARS-CoV genome differed at 26.64 sites from the reference genome of SARS-CoV-2. Furthermore, the microsatellite analysis highlighted a relatively higher number of average microsatellites for MERS-CoV and SARS-CoV-2 (106.8 and 107, respectively), and a lower number for SARS-CoV and BAT-CoV (95.8 and 98.5, respectively). Collectively, the analysis of multiple genetic markers of selected ß viral genomes revealed that the newly born SARS-COV-2 is closely related to BAT-CoV, whereas, MERS-CoV is more distinct from the SARS-CoV-2 than BAT-CoV and SARS-CoV.


Asunto(s)
Alphacoronavirus/genética , Genoma Viral/genética , Repeticiones de Microsatélite/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Animales , Secuencia de Bases/genética , Quirópteros/virología , Análisis Mutacional de ADN , Marcadores Genéticos/genética , Variación Genética/genética , Humanos , Filogenia , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Secuenciación Completa del Genoma
4.
J Med Syst ; 44(2): 37, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31853655

RESUMEN

Alzheimer's disease (AD) is an incurable neurodegenerative disorder accounting for 70%-80% dementia cases worldwide. Although, research on AD has increased in recent years, however, the complexity associated with brain structure and functions makes the early diagnosis of this disease a challenging task. Resting-state functional magnetic resonance imaging (rs-fMRI) is a neuroimaging technology that has been widely used to study the pathogenesis of neurodegenerative diseases. In literature, the computer-aided diagnosis of AD is limited to binary classification or diagnosis of AD and MCI stages. However, its applicability to diagnose multiple progressive stages of AD is relatively under-studied. This study explores the effectiveness of rs-fMRI for multi-class classification of AD and its associated stages including CN, SMC, EMCI, MCI, LMCI, and AD. A longitudinal cohort of resting-state fMRI of 138 subjects (25 CN, 25 SMC, 25 EMCI, 25 LMCI, 13 MCI, and 25 AD) from Alzheimer's Disease Neuroimaging Initiative (ADNI) is studied. To provide a better insight into deep learning approaches and their applications to AD classification, we investigate ResNet-18 architecture in detail. We consider the training of the network from scratch by using single-channel input as well as performed transfer learning with and without fine-tuning using an extended network architecture. We experimented with residual neural networks to perform AD classification task and compared it with former research in this domain. The performance of the models is evaluated using precision, recall, f1-measure, AUC and ROC curves. We found that our networks were able to significantly classify the subjects. We achieved improved results with our fine-tuned model for all the AD stages with an accuracy of 100%, 96.85%, 97.38%, 97.43%, 97.40% and 98.01% for CN, SMC, EMCI, LMCI, MCI, and AD respectively. However, in terms of overall performance, we achieved state-of-the-art results with an average accuracy of 97.92% and 97.88% for off-the-shelf and fine-tuned models respectively. The Analysis of results indicate that classification and prediction of neurodegenerative brain disorders such as AD using functional magnetic resonance imaging and advanced deep learning methods is promising for clinical decision making and have the potential to assist in early diagnosis of AD and its associated stages.


Asunto(s)
Enfermedad de Alzheimer/clasificación , Enfermedad de Alzheimer/diagnóstico por imagen , Diagnóstico por Computador/métodos , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Aprendizaje Profundo , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Vías Nerviosas/patología , Descanso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA