Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38894363

RESUMEN

The inability to see makes moving around very difficult for visually impaired persons. Due to their limited movement, they also struggle to protect themselves against moving and non-moving objects. Given the substantial rise in the population of those with vision impairments in recent years, there has been an increasing amount of research devoted to the development of assistive technologies. This review paper highlights the state-of-the-art assistive technology, tools, and systems for improving the daily lives of visually impaired people. Multi-modal mobility assistance solutions are also evaluated for both indoor and outdoor environments. Lastly, an analysis of several approaches is also provided, along with recommendations for the future.


Asunto(s)
Dispositivos de Autoayuda , Personas con Daño Visual , Humanos , Personas con Daño Visual/rehabilitación
2.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38894436

RESUMEN

This study presents a novel computational radio frequency identification (RFID) system designed specifically for assisting blind individuals, utilising software-defined radio (SDR) with coherent detection. The system employs battery-less ultra-high-frequency (UHF) tag arrays in Gen2 RFID systems, enhancing the transmission of sensed information beyond standard identification bits. Our method uses an SDR reader to efficiently manage multiple tags with Gen2 preambles implemented on a single transceiver card. The results highlight the system's real-time capability to detect movements and direction of walking within a four-meter range, indicating significant advances in contactless activity monitoring. This system not only handles the complexities of multiple tag scenarios but also delineates the influence of system parameters on RFID operational efficiency. This study contributes to assistive technology, provides a platform for future advancements aimed at addressing contemporary limitations in pseudo-localisation, and offers a practical, affordable assistance system for blind individuals.

3.
Sci Rep ; 14(1): 11498, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769427

RESUMEN

Strokes are a leading global cause of mortality, underscoring the need for early detection and prevention strategies. However, addressing hidden risk factors and achieving accurate prediction become particularly challenging in the presence of imbalanced and missing data. This study encompasses three imputation techniques to deal with missing data. To tackle data imbalance, it employs the synthetic minority oversampling technique (SMOTE). The study initiates with a baseline model and subsequently employs an extensive range of advanced models. This study thoroughly evaluates the performance of these models by employing k-fold cross-validation on various imbalanced and balanced datasets. The findings reveal that age, body mass index (BMI), average glucose level, heart disease, hypertension, and marital status are the most influential features in predicting strokes. Furthermore, a Dense Stacking Ensemble (DSE) model is built upon previous advanced models after fine-tuning, with the best-performing model as a meta-classifier. The DSE model demonstrated over 96% accuracy across diverse datasets, with an AUC score of 83.94% on imbalanced imputed dataset and 98.92% on balanced one. This research underscores the remarkable performance of the DSE model, compared to the previous research on the same dataset. It highlights the model's potential for early stroke detection to improve patient outcomes.


Asunto(s)
Aprendizaje Automático , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/epidemiología , Factores de Riesgo , Masculino , Femenino , Anciano , Persona de Mediana Edad , Índice de Masa Corporal
4.
PLoS One ; 18(12): e0295615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38150429

RESUMEN

Ad-hoc wireless sensor networks face challenges of optimized node deployment for maximizing coverage and efficiently routing data to control centers in post disaster events. These challenges impact the outcome for extending the lifetime of wireless sensor networks. This study presents a uav assisted reactive zone based EHGR (energy efficient hierarchical gateway routing protocol) that is deployed in a situation where the natural calamity has caused communication and infrastructure damage to a major portion of the sensor network. EHGR is a hybrid multi layer routing protocol for large heterogeneous sensor nodes (smart nodes, basic nodes, user handheld devices etc.) EHGR is tailored to meet two important concerns for a disaster hit wsn ie. optimized deployment and energy efficient routing. The first part of EGHR focuses on maximized coverage during node deployments. Maximized coverage is an important aspect to be considered during the event of disaster since most of the nodes loose coverage and are detached from the wireless sensor network. The first part of EHGR uses state of the art game theory approach to build a model that maximizes the coverage of nodes during the deployment phase from all participating entities i.e. nodes and uavs. Rather than fixing the cluster head as is the case in traditional cluster-based approaches EHGR uses the energy centroid nodes. Energy centroid nodes evolve on the basis of aggregated energy of the zone. This approach is superior to simply electing cluster head nodes on the basis of some probability function. The nodes that fail to achieve any successful outcome from the game theory matching model fail to get any association. These nodes will use multi hop d2d relay approach to reach the energy centroid nodes. Gateway relay nodes used with the game theory approach during the deployment of the uav assisted wsn improves the overall coverage by 25% against traditional leach based hierarchical approaches. Once the optimum deployment phase is completed the routing phase is initiated. Aggregated data is sent by the energy centroid nodes from the ECN nodes to the servicing micro controller enabled un manned aerial vehicles. The routing process places partial burden of zone formation and data transmission to the control center for each phase on the servicing uavs. Energy centroid nodes engage only in the data aggregation process and transmission of data to servicing uav. Servicing-uavs reduce energy dissipated of the entire zone which result in gradual decrease of energy for the zone thus increasing the network lifetime. Node deployment phase and the routing phase of EHGR utilize the computations provide by the mirco controller enabled unmanned aerial vehicles such that the computationally intensive calculations are offloaded to the servicing uav. Experiment results indicate an increase in the first dead node report, half dead node report, and last dead node report. Network lifetime is extended to approximately 1800 rounds which is an increase by ratio of 100% against the traditional leach approach and increase by 50% percent against the latest approaches as highlighted in the literature.


Asunto(s)
Algoritmos , Conservación de los Recursos Energéticos , Tecnología Inalámbrica , Redes de Comunicación de Computadores , Fenómenos Físicos
5.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631632

RESUMEN

This paper addresses the growing demand for healthcare systems, particularly among the elderly population. The need for these systems arises from the desire to enable patients and seniors to live independently in their homes without relying heavily on their families or caretakers. To achieve substantial improvements in healthcare, it is essential to ensure the continuous development and availability of information technologies tailored explicitly for patients and elderly individuals. The primary objective of this study is to comprehensively review the latest remote health monitoring systems, with a specific focus on those designed for older adults. To facilitate a comprehensive understanding, we categorize these remote monitoring systems and provide an overview of their general architectures. Additionally, we emphasize the standards utilized in their development and highlight the challenges encountered throughout the developmental processes. Moreover, this paper identifies several potential areas for future research, which promise further advancements in remote health monitoring systems. Addressing these research gaps can drive progress and innovation, ultimately enhancing the quality of healthcare services available to elderly individuals. This, in turn, empowers them to lead more independent and fulfilling lives while enjoying the comforts and familiarity of their own homes. By acknowledging the importance of healthcare systems for the elderly and recognizing the role of information technologies, we can address the evolving needs of this population. Through ongoing research and development, we can continue to enhance remote health monitoring systems, ensuring they remain effective, efficient, and responsive to the unique requirements of elderly individuals.


Asunto(s)
Lagunas en las Evidencias , Tecnología de la Información , Humanos , Anciano , Reconocimiento en Psicología
6.
Sensors (Basel) ; 23(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514938

RESUMEN

The emergence of Industry 5.0 has highlighted the significance of information usage, processing, and data analysis when maintaining physical assets. This has enabled the creation of the Digital Twin (DT). Information about an asset is generated and consumed during its entire life cycle. The main goal of DT is to connect and represent physical assets as close to reality as possible virtually. Unfortunately, the lack of security and trust among DT participants remains a problem as a result of data sharing. This issue cannot be resolved with a central authority when dealing with large organisations. Blockchain technology has been proposed as a solution for DT information sharing and security challenges. This paper proposes a Blockchain-based solution for digital twin using Ethereum blockchain with performance and cost analysis. This solution employs a smart contract for information management and access control for stakeholders of the digital twin, which is secure and tamper-proof. This implementation is based on Ethereum and IPFS. We use IPFS storage servers to store stakeholders' details and manage information. A real-world use-case of a production line of a smartphone, where a conveyor belt is used to carry different parts, is presented to demonstrate the proposed system. The performance evaluation of our proposed system shows that it is secure and achieves performance improvement when compared with other methods. The comparison of results with state-of-the-art methods showed that the proposed system consumed fewer resources in a transaction cost, with an 8% decrease. The execution cost increased by 10%, but the cost of ether was 93% less than the existing methods.

7.
Sensors (Basel) ; 23(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37177642

RESUMEN

Genome-wide association studies have proven their ability to improve human health outcomes by identifying genotypes associated with phenotypes. Various works have attempted to predict the risk of diseases for individuals based on genotype data. This prediction can either be considered as an analysis model that can lead to a better understanding of gene functions that underlie human disease or as a black box in order to be used in decision support systems and in early disease detection. Deep learning techniques have gained more popularity recently. In this work, we propose a deep-learning framework for disease risk prediction. The proposed framework employs a multilayer perceptron (MLP) in order to predict individuals' disease status. The proposed framework was applied to the Wellcome Trust Case-Control Consortium (WTCCC), the UK National Blood Service (NBS) Control Group, and the 1958 British Birth Cohort (58C) datasets. The performance comparison of the proposed framework showed that the proposed approach outperformed the other methods in predicting disease risk, achieving an area under the curve (AUC) up to 0.94.


Asunto(s)
Aprendizaje Profundo , Humanos , Estudio de Asociación del Genoma Completo , Redes Neurales de la Computación , Genotipo , Genómica
8.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772737

RESUMEN

Increased life expectancy in most countries is a result of continuous improvements at all levels, starting from medicine and public health services, environmental and personal hygiene to the use of the most advanced technologies by healthcare providers. Despite these significant improvements, especially at the technological level in the last few decades, the overall access to healthcare services and medical facilities worldwide is not equally distributed. Indeed, the end beneficiary of these most advanced healthcare services and technologies on a daily basis are mostly residents of big cities, whereas the residents of rural areas, even in developed countries, have major difficulties accessing even basic medical services. This may lead to huge deficiencies in timely medical advice and assistance and may even cause death in some cases. Remote healthcare is considered a serious candidate for facilitating access to health services for all; thus, by using the most advanced technologies, providing at the same time high quality diagnosis and ease of implementation and use. ECG analysis and related cardiac diagnosis techniques are the basic healthcare methods providing rapid insights in potential health issues through simple visualization and interpretation by clinicians or by automatic detection of potential cardiac anomalies. In this paper, we propose a novel machine learning (ML) architecture for the ECG classification regarding five heart diseases based on temporal convolution networks (TCN). The proposed design, which implements a dilated causal one-dimensional convolution on the input heartbeat signals, seems to be outperforming all existing ML methods with an accuracy of 96.12% and an F1 score of 84.13%, using a reduced number of parameters (10.2 K). Such results make the proposed TCN architecture a good candidate for low power consumption hardware platforms, and thus its potential use in low cost embedded devices for remote health monitoring.


Asunto(s)
Atención a la Salud , Personal de Salud , Humanos , Aprendizaje Automático , Corazón , Electrocardiografía , Algoritmos
9.
J Autism Dev Disord ; 53(1): 216-228, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35018585

RESUMEN

An increasing amount of technological solutions aiming to support emotion regulation are being developed for Autistic people. However, there remains a lack of understanding of user needs, and design factors which has led to poor usability and varied success. Furthermore, studies assessing the feasibility of emotion regulation technology via physiological signals for autistic people are increasingly showing promise, yet to date there has been no exploration of views from the autistic community on the benefits/challenges such technology may present in practice. Focus groups with autistic people and their allies were conducted to gain insight into experiences and expectations of technological supports aimed at supporting emotion regulation. Reflexive thematic analysis generated three themes: (1) communication challenges (2) views on emotion regulation technology (3) 'how' technology is implemented. Results provide meaningful insight into the socio-emotional communication challenges faced by autistic people, and explore the expectations of technology aimed at supporting emotion regulation.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Regulación Emocional , Humanos , Emociones , Tecnología
10.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559979

RESUMEN

This study aims to develop and evaluate an automated system for extracting information related to patient substance use (smoking, alcohol, and drugs) from unstructured clinical text (medical discharge records). The authors propose a four-stage system for the extraction of the substance-use status and related attributes (type, frequency, amount, quit-time, and period). The first stage uses a keyword search technique to detect sentences related to substance use and to exclude unrelated records. In the second stage, an extension of the NegEx negation detection algorithm is developed and employed for detecting the negated records. The third stage involves identifying the temporal status of the substance use by applying windowing and chunking methodologies. Finally, in the fourth stage, regular expressions, syntactic patterns, and keyword search techniques are used in order to extract the substance-use attributes. The proposed system achieves an F1-score of up to 0.99 for identifying substance-use-related records, 0.98 for detecting the negation status, and 0.94 for identifying temporal status. Moreover, F1-scores of up to 0.98, 0.98, 1.00, 0.92, and 0.98 are achieved for the extraction of the amount, frequency, type, quit-time, and period attributes, respectively. Natural Language Processing (NLP) and rule-based techniques are employed efficiently for extracting substance-use status and attributes, with the proposed system being able to detect substance-use status and attributes over both sentence-level and document-level data. Results show that the proposed system outperforms the compared state-of-the-art substance-use identification system on an unseen dataset, demonstrating its generalisability.


Asunto(s)
Registros Electrónicos de Salud , Trastornos Relacionados con Sustancias , Humanos , Algoritmos , Procesamiento de Lenguaje Natural , Registros , Trastornos Relacionados con Sustancias/diagnóstico
11.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236272

RESUMEN

Human activity monitoring is a fascinating area of research to support autonomous living in the aged and disabled community. Cameras, sensors, wearables, and non-contact microwave sensing have all been suggested in the past as methods for identifying distinct human activities. Microwave sensing is an approach that has lately attracted much interest since it has the potential to address privacy problems caused by cameras and discomfort caused by wearables, especially in the healthcare domain. A fundamental drawback of the current microwave sensing methods such as radar is non-line-of-sight and multi-floor environments. They need precise and regulated conditions to detect activity with high precision. In this paper, we have utilised the publicly available online database based on the intelligent reflecting surface (IRS) system developed at the Communications, Sensing and Imaging group at the University of Glasgow, UK (references 39 and 40). The IRS system works better in the multi-floor and non-line-of-sight environments. This work for the first time uses algorithms such as support vector machine Bagging and Decision Tree on the publicly available IRS data and achieves better accuracy when a subset of the available data is considered along specific human activities. Additionally, the work also considers the processing time taken by the classier in training stage when exposed to the IRS data which was not previously explored.


Asunto(s)
Actividades Humanas , Radar , Anciano , Algoritmos , Atención a la Salud , Humanos , Máquina de Vectores de Soporte
12.
Comput Methods Programs Biomed ; 226: 107141, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162246

RESUMEN

BACKGROUND AND OBJECTIVE: Chest X-ray imaging is a relatively cheap and accessible diagnostic tool that can assist in the diagnosis of various conditions, including pneumonia, tuberculosis, COVID-19, and others. However, the requirement for expert radiologists to view and interpret chest X-ray images can be a bottleneck, especially in remote and deprived areas. Recent advances in machine learning have made possible the automated diagnosis of chest X-ray scans. In this work, we examine the use of a novel Transformer-based deep learning model for the task of chest X-ray image classification. METHODS: We first examine the performance of the Vision Transformer (ViT) state-of-the-art image classification machine learning model for the task of chest X-ray image classification, and then propose and evaluate the Input Enhanced Vision Transformer (IEViT), a novel enhanced Vision Transformer model that can achieve improved performance on chest X-ray images associated with various pathologies. RESULTS: Experiments on four chest X-ray image data sets containing various pathologies (tuberculosis, pneumonia, COVID-19) demonstrated that the proposed IEViT model outperformed ViT for all the data sets and variants examined, achieving an F1-score between 96.39% and 100%, and an improvement over ViT of up to +5.82% in terms of F1-score across the four examined data sets. IEViT's maximum sensitivity (recall) ranged between 93.50% and 100% across the four data sets, with an improvement over ViT of up to +3%, whereas IEViT's maximum precision ranged between 97.96% and 100% across the four data sets, with an improvement over ViT of up to +6.41%. CONCLUSIONS: Results showed that the proposed IEViT model outperformed all ViT's variants for all the examined chest X-ray image data sets, demonstrating its superiority and generalisation ability. Given the relatively low cost and the widespread accessibility of chest X-ray imaging, the use of the proposed IEViT model can potentially offer a powerful, but relatively cheap and accessible method for assisting diagnosis using chest X-ray images.


Asunto(s)
Rayos X , Humanos , COVID-19/diagnóstico por imagen , Aprendizaje Profundo , Neumonía/diagnóstico por imagen , SARS-CoV-2
13.
Sensors (Basel) ; 22(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35957162

RESUMEN

Cardiac arrhythmias pose a significant danger to human life; therefore, it is of utmost importance to be able to efficiently diagnose these arrhythmias promptly. There exist many techniques for the detection of arrhythmias; however, the most widely adopted method is the use of an Electrocardiogram (ECG). The manual analysis of ECGs by medical experts is often inefficient. Therefore, the detection and recognition of ECG characteristics via machine-learning techniques have become prevalent. There are two major drawbacks of existing machine-learning approaches: (a) they require extensive training time; and (b) they require manual feature selection. To address these issues, this paper presents a novel deep-learning framework that integrates various networks by stacking similar layers in each network to produce a single robust model. The proposed framework has been tested on two publicly available datasets for the recognition of five micro-classes of arrhythmias. The overall classification sensitivity, specificity, positive predictive value, and accuracy of the proposed approach are 98.37%, 99.59%, 98.41%, and 99.35%, respectively. The results are compared with state-of-the-art approaches. The proposed approach outperformed the existing approaches in terms of sensitivity, specificity, positive predictive value, accuracy and computational cost.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Señales Asistido por Computador , Algoritmos , Arritmias Cardíacas/diagnóstico , Electrocardiografía/métodos , Frecuencia Cardíaca , Humanos
14.
Sensors (Basel) ; 22(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35746144

RESUMEN

Currently, information and communication technology (ICT) allows health institutions to reach disadvantaged groups in rural areas using sensing and artificial intelligence (AI) technologies. Applications of these technologies are even more essential for maternal and infant health, since maternal and infant health is vital for a healthy society. Over the last few years, researchers have delved into sensing and artificially intelligent healthcare systems for maternal and infant health. Sensors are exploited to gauge health parameters, and machine learning techniques are investigated to predict the health conditions of patients to assist medical practitioners. Since these healthcare systems deal with large amounts of data, significant development is also noted in the computing platforms. The relevant literature reports the potential impact of ICT-enabled systems for improving maternal and infant health. This article reviews wearable sensors and AI algorithms based on existing systems designed to predict the risk factors during and after pregnancy for both mothers and infants. This review covers sensors and AI algorithms used in these systems and analyzes each approach with its features, outcomes, and novel aspects in chronological order. It also includes discussion on datasets used and extends challenges as well as future work directions for researchers.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Algoritmos , Atención a la Salud , Humanos , Lactante
15.
Sensors (Basel) ; 22(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408303

RESUMEN

Industry 4.0 is a new paradigm of digitalization and automation that demands high data rates and real-time ultra-reliable agile communication. Industrial communication at sub-6 GHz industrial, scientific, and medical (ISM) bands has some serious impediments, such as interference, spectral congestion, and limited bandwidth. These limitations hinder the high throughput and reliability requirements of modern industrial applications and mission-critical scenarios. In this paper, we critically assess the potential of the 60 GHz millimeter-wave (mmWave) ISM band as an enabler for ultra-reliable low-latency communication (URLLC) in smart manufacturing, smart factories, and mission-critical operations in Industry 4.0 and beyond. A holistic overview of 60 GHz wireless standards and key performance indicators are discussed. Then the review of 60 GHz smart antenna systems facilitating agile communication for Industry 4.0 and beyond is presented. We envisage that the use of 60 GHz communication and smart antenna systems are crucial for modern industrial communication so that URLLC in Industry 4.0 and beyond could soar to its full potential.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Comunicación , Industrias , Reproducibilidad de los Resultados
16.
Sci Rep ; 12(1): 3715, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260675

RESUMEN

Personalized hydration level monitoring play vital role in sports, health, wellbeing and safety of a person while performing particular set of activities. Clinical staff must be mindful of numerous physiological symptoms that identify the optimum hydration specific to the person, event and environment. Hence, it becomes extremely critical to monitor the hydration levels in a human body to avoid potential complications and fatalities. Hydration tracking solutions available in the literature are either inefficient and invasive or require clinical trials. An efficient hydration monitoring system is very required, which can regularly track the hydration level, non-invasively. To this aim, this paper proposes a machine learning (ML) and deep learning (DL) enabled hydration tracking system, which can accurately estimate the hydration level in human skin using galvanic skin response (GSR) of human body. For this study, data is collected, in three different hydration states, namely hydrated, mild dehydration (8 hours of dehydration) and extreme mild dehydration (16 hours of dehydration), and three different body postures, such as sitting, standing and walking. Eight different ML algorithms and four different DL algorithms are trained on the collected GSR data. Their accuracies are compared and a hybrid (ML+DL) model is proposed to increase the estimation accuracy. It can be reported that hybrid Bi-LSTM algorithm can achieve an accuracy of 97.83%.


Asunto(s)
Deportes , Dispositivos Electrónicos Vestibles , Deshidratación/diagnóstico , Respuesta Galvánica de la Piel , Humanos , Aprendizaje Automático
17.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35161555

RESUMEN

Wireless sensing is the utmost cutting-edge way of monitoring different health-related activities and, concurrently, preserving most of the privacy of individuals. To meet future needs, multi-subject activity monitoring is in demand, whether it is for smart care centres or homes. In this paper, a smart monitoring system for different human activities is proposed based on radio-frequency sensing integrated with ensemble machine learning models. The ensemble technique can recognise a wide range of activity based on alterations in the wireless signal's Channel State Information (CSI). The proposed system operates at 3.75 GHz, and up to four subjects participated in the experimental study in order to acquire data on sixteen distinct daily living activities: sitting, standing, and walking. The proposed methodology merges subject count and performed activities, resulting in occupancy count and activity performed being recognised at the same time. To capture alterations owing to concurrent multi-subject motions, the CSI amplitudes collected from 51 subcarriers of the wireless signals were processed and merged. To distinguish multi-subject activity, a machine learning model based on an ensemble learning technique was designed and trained using the acquired CSI data. For maximum activity classes, the proposed approach attained a high average accuracy of up to 98%. The presented system has the ability to fulfil prospective health activity monitoring demands and is a viable solution towards well-being tracking.


Asunto(s)
Programas Informáticos , Caminata , Ambiente Controlado , Actividades Humanas , Humanos , Estudios Prospectivos
18.
Sensors (Basel) ; 22(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35062422

RESUMEN

This article presents non-invasive sensing-based diagnoses of pneumonia disease, exploiting a deep learning model to make the technique non-invasive coupled with security preservation. Sensing and securing healthcare and medical images such as X-rays that can be used to diagnose viral diseases such as pneumonia is a challenging task for researchers. In the past few years, patients' medical records have been shared using various wireless technologies. The wireless transmitted data are prone to attacks, resulting in the misuse of patients' medical records. Therefore, it is important to secure medical data, which are in the form of images. The proposed work is divided into two sections: in the first section, primary data in the form of images are encrypted using the proposed technique based on chaos and convolution neural network. Furthermore, multiple chaotic maps are incorporated to create a random number generator, and the generated random sequence is used for pixel permutation and substitution. In the second part of the proposed work, a new technique for pneumonia diagnosis using deep learning, in which X-ray images are used as a dataset, is proposed. Several physiological features such as cough, fever, chest pain, flu, low energy, sweating, shaking, chills, shortness of breath, fatigue, loss of appetite, and headache and statistical features such as entropy, correlation, contrast dissimilarity, etc., are extracted from the X-ray images for the pneumonia diagnosis. Moreover, machine learning algorithms such as support vector machines, decision trees, random forests, and naive Bayes are also implemented for the proposed model and compared with the proposed CNN-based model. Furthermore, to improve the CNN-based proposed model, transfer learning and fine tuning are also incorporated. It is found that CNN performs better than other machine learning algorithms as the accuracy of the proposed work when using naive Bayes and CNN is 89% and 97%, respectively, which is also greater than the average accuracy of the existing schemes, which is 90%. Further, K-fold analysis and voting techniques are also incorporated to improve the accuracy of the proposed model. Different metrics such as entropy, correlation, contrast, and energy are used to gauge the performance of the proposed encryption technology, while precision, recall, F1 score, and support are used to evaluate the effectiveness of the proposed machine learning-based model for pneumonia diagnosis. The entropy and correlation of the proposed work are 7.999 and 0.0001, respectively, which reflects that the proposed encryption algorithm offers a higher security of the digital data. Moreover, a detailed comparison with the existing work is also made and reveals that both the proposed models work better than the existing work.


Asunto(s)
Aprendizaje Profundo , Neumonía , Algoritmos , Teorema de Bayes , Humanos , Redes Neurales de la Computación , Neumonía/diagnóstico , Privacidad
19.
Sensors (Basel) ; 21(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34960321

RESUMEN

In recent years, a plethora of algorithms have been devised for efficient human activity recognition. Most of these algorithms consider basic human activities and neglect postural transitions because of their subsidiary occurrence and short duration. However, postural transitions assume a significant part in the enforcement of an activity recognition framework and cannot be neglected. This work proposes a hybrid multi-model activity recognition approach that employs basic and transition activities by utilizing multiple deep learning models simultaneously. For final classification, a dynamic decision fusion module is introduced. The experiments are performed on the publicly available datasets. The proposed approach achieved a classification accuracy of 96.11% and 98.38% for the transition and basic activities, respectively. The outcomes show that the proposed method is superior to the state-of-the-art methods in terms of accuracy and precision.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Actividades Humanas , Humanos , Reconocimiento en Psicología
20.
Micromachines (Basel) ; 12(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34577672

RESUMEN

Micro-/nano-scaled structures, materials, and devices enable the continuous monitoring of human physical activities and behaviors, as well as physiological and biochemical parameters during daily life [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...