Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713211

RESUMEN

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Asunto(s)
Quitinasas , Silenciador del Gen , Lacasa , Quitinasas/genética , Quitinasas/metabolismo , Quitinasas/biosíntesis , Lacasa/genética , Lacasa/metabolismo , Lacasa/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimología , Fermentación , Interferencia de ARN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/enzimología , Pared Celular/metabolismo , Pared Celular/genética
2.
Plant Commun ; : 100937, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693694

RESUMEN

The crosstalk between clathrin-mediated endocytosis (CME) and autophagy pathway has been reported in mammals. However, the interconnection of CME with autophagy has not been established in plants. In this report, we showed that Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopied the Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants both in auto-immunity and nutrient sensitivity. Accordingly, the autophagy pathway was significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, we demonstrated with multiple assays that CLC2 directly interacted with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP were subjected to autophagic degradation and the degradation of GFP-ATG8h was significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneously knocking out ATG8h and ATG8i by the CRISPR/CAS9 resulted in an enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results uncovered a link between the function of CLCs and the autophagy pathway in Arabidopsis.

3.
Adv Sci (Weinh) ; : e2400569, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666385

RESUMEN

The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.

4.
J Cell Physiol ; 239(5): e31255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501341

RESUMEN

Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteolisis , Proteolisis/efectos de los fármacos , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Ubiquitina/metabolismo , Péptidos/metabolismo , Quimera Dirigida a la Proteólisis
5.
J Clin Lab Anal ; 38(7): e25030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525916

RESUMEN

BACKGROUND: The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS: Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS: We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS: The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.


Asunto(s)
Arginina , Dineínas Citoplasmáticas , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Metilación , Arginina/metabolismo , Arginina/química , Humanos , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Procesamiento Proteico-Postraduccional , Dineínas/metabolismo , Dineínas/genética , Dineínas/química , Secuencia de Aminoácidos
6.
J Cell Physiol ; 239(5): e31215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308657

RESUMEN

Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.


Asunto(s)
Cilios , Sustancia Propia , Endotelio Corneal , Homeostasis , Animales , Cilios/metabolismo , Homeostasis/fisiología , Endotelio Corneal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Córnea , Actinas/metabolismo , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Lesiones de la Cornea/genética
7.
Cell Death Dis ; 15(1): 47, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218748

RESUMEN

Cilia are highly conserved eukaryotic organelles that protrude from the cell surface and are involved in sensory perception, motility, and signaling. Their proper assembly and function rely on the bidirectional intraflagellar transport (IFT) system, which involves motor proteins, including antegrade kinesins and retrograde dynein. Although the role of IFT-mediated transport in cilia has been extensively studied, recent research has highlighted the contribution of IFT-independent kinesins in ciliary processes. The coordinated activities and interplay between IFT kinesins and IFT-independent kinesins are crucial for maintaining ciliary homeostasis. In this comprehensive review, we aim to delve into the specific contributions and mechanisms of action of the IFT-independent kinesins in cilia. By shedding light on their involvement, we hope to gain a more holistic perspective on ciliogenesis and ciliopathies.


Asunto(s)
Flagelos , Cinesinas , Flagelos/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Cilios/metabolismo , Homeostasis , Dineínas/metabolismo
8.
Clin Pharmacol Ther ; 115(2): 256-268, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37994531

RESUMEN

Sacituzumab govitecan is widely used for the treatment of breast cancer and urothelial carcinoma, but available information regarding adverse events (AEs) is limited. We aim to explore the AE induced by sacituzumab govitecan by mining the FDA Adverse Event Reporting System (FAERS) database. The association between sacituzumab govitecan and AEs was evaluated using the information component. A multivariate logistic regression analysis was conducted for all identified signals to explore the risk factors associated with AEs leading to hospitalization. In total, 1,884 reports related to sacituzumab govitecan were retrieved, and 114 AE signals involving 20 systems were identified. The median time for onset of AEs was ~ 6-7 days after initiating treatment with sacituzumab govitecan, with over 80% of AEs occurring within 30 days. Subgroup analysis revealed that 14 signals were reported in men and 110 in women. There were 58 signals reported in patients under 65 following the use of sacituzumab govitecan, 59 signals in patients over 65, and 31 signals were present in both groups. Multivariable analysis showed that being male and the occurrence of colitis, pneumonitis, febrile neutropenia, pyrexia, sepsis, dehydration, and diarrhea were risk factors leading to hospitalization with an area under the curve (AUC) of 0.89. Additionally, sensitivity analysis revealed that this study had good robustness. This is the first retrospective analysis based on FAERS to review the safety of sacituzumab govitecan. The results highlight the need to closely monitor adverse reactions such as neutropenia, diarrhea, colitis, and sepsis when using sacituzumab govitecan.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Camptotecina/análogos & derivados , Carcinoma de Células Transicionales , Colitis , Inmunoconjugados , Sepsis , Neoplasias de la Vejiga Urinaria , Humanos , Masculino , Femenino , Farmacovigilancia , Estudios Retrospectivos , Diarrea
9.
Front Pharmacol ; 14: 1231320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044938

RESUMEN

Objective: While several drugs have been linked to acute pancreatitis (AP), the AP-related risk of most drugs remains unclear. This study investigated the risk factors for drug-induced AP by analyzing a large dataset from the FDA Adverse Event Reporting System (FAERS). Methods: The reporting odds ratios (ROR) were used to assess the reports of drug-induced AP from the first quarter of 2004 to the second quarter of 2022. Single-factor, LASSO, and multi-factor regression analysis were performed to explore drug-related AP-related risk factors. Bonferroni correction was applied for the multiple comparisons performed. Results: A total of 264 drugs associated with AP, including antineoplastic drugs (35/264), antidiabetic drugs (28/264), antibacterial drugs (24/264), immunomodulatory drugs (11/264), antipsychotic drugs (6/264), and other drugs (160/264) were retrieved. Multi-factor analysis showed that males, age 41-54 years old, and 36 drugs, including Tigecycline, were risk factors for drug-related AP. The median time to drug-related AP onset was 31 days (interquartile range [IQR] 7-102 days) and about 75% of adverse events occurred within 100 days. Conclusion: These findings may help clinicians to identify drug-related AP at the early stage and can be used to inform future studies of drug-related AP pathogenesis.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38015682

RESUMEN

Most deep neural networks (DNNs) consist fundamentally of convolutional and/or fully connected layers, wherein the linear transform can be cast as the product between a filter matrix and a data matrix obtained by arranging feature tensors into columns. Recently proposed deformable butterfly (DeBut) decomposes the filter matrix into generalized, butterfly-like factors, thus achieving network compression orthogonal to the traditional ways of pruning or low-rank decomposition. This work reveals an intimate link between DeBut and a systematic hierarchy of depthwise and pointwise convolutions, which explains the empirically good performance of DeBut layers. By developing an automated DeBut chain generator, we show for the first time the viability of homogenizing a DNN into all DeBut layers, thus achieving extreme sparsity and compression. Various examples and hardware benchmarks verify the advantages of All-DeBut networks. In particular, we show it is possible to compress a PointNet to 5% parameters with 5% accuracy drop, a record not achievable by other compression schemes.

11.
J Med Chem ; 66(2): 1339-1348, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36608275

RESUMEN

While proteolysis-targeting chimeras (PROTACs) are showing promise for targeting previously undruggable molecules, their application has been limited by difficulties in identifying suitable ligands and undesired on-target toxicity. Aptamers can virtually recognize any protein through their unique and switchable conformations. Here, by exploiting aptamers as targeting warheads, we developed a novel strategy for inducible degradation of undruggable proteins. As a proof of concept, we chose oncogenic nucleolin (NCL) as the target and generated a series of NCL degraders, and demonstrated that dNCL#T1 induced NCL degradation in a ubiquitin-proteasome-dependent manner, thereby inhibiting NCL-mediated breast cancer cell proliferation. To reduce on-target toxicity, we further developed a light-controllable PROTAC, opto-dNCL#T1, by introducing a photolabile complementary oligonucleotide to hybridize with dNCL#T1. UVA irradiation liberated dNCL#T1 from caged opto-dNCL#T1, leading to dNCL#T1 activation and NCL degradation. These results indicate that aptamer-based PROTACs are a viable alternative approach to degrade proteins of interest in a highly tunable manner.


Asunto(s)
Fosfoproteínas , Complejo de la Endopetidasa Proteasomal , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Nucleolina
12.
Adv Sci (Weinh) ; 9(21): e2105365, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35619548

RESUMEN

Retinopathy of prematurity (ROP) is one of the leading causes of childhood visual impairment and blindness. However, there are still very few effective pharmacological interventions for ROP. Histone deacetylase 6 (HDAC6)-mediated disassembly of photoreceptor cilia has recently been implicated as an early event in the pathogenesis of ROP. Herein it is shown that enhanced expression of HDAC6 by intravitreal injection of adenoviruses encoding HDAC6 induces the typical pathological changes associated with ROP in mice, including disruption of the membranous disks of photoreceptor outer segments and a decrease in electroretinographic amplitudes. Hdac6 transgenic mice exhibit similar ROP-related defects in retinal structures and functions and disassembly of photoreceptor cilia, whereas Hdac6 knockout mice are resistant to oxygen change-induced retinal defects. It is further shown that blocking HDAC6-mediated cilium disassembly by intravitreal injection of small-molecule compounds protect mice from ROP-associated retinal defects. The findings indicate that pharmacological targeting of the HDAC6-cilium axis may represent a promising strategy for the prevention of ROP.


Asunto(s)
Cilios , Histona Desacetilasa 6 , Retinopatía de la Prematuridad , Animales , Cilios/metabolismo , Cilios/patología , Histona Desacetilasa 6/metabolismo , Ratones , Oxígeno/metabolismo , Retina/metabolismo , Retina/patología , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
13.
EMBO Rep ; 23(5): e54090, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35301795

RESUMEN

Despite the importance of cilia in cell signaling and motility, the molecular mechanisms regulating cilium formation remain incompletely understood. Herein, we characterize enkurin domain-containing protein 1 (ENKD1) as a novel centrosomal protein that mediates the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole to promote ciliogenesis. We show that Enkd1 knockout mice possess ciliogenesis defects in multiple organs. Super-resolution microscopy reveals that ENKD1 is a stable component of the centrosome throughout the ciliogenesis process. Simultaneous knockdown of ENKD1 and CP110 significantly reverses the ciliogenesis defects induced by ENKD1 depletion. Protein interaction analysis shows that ENKD1 competes with centrosomal protein 97 (CEP97) in binding to CP110. Depletion of ENKD1 enhances the CP110-CEP97 interaction and detains CP110 at the mother centriole. These findings thus identify ENKD1 as a centrosomal protein and uncover a novel mechanism controlling CP110 removal from the mother centriole for the initiation of ciliogenesis.


Asunto(s)
Centriolos , Proteínas Asociadas a Microtúbulos , Animales , Ratones , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Plasma Seminal/metabolismo
14.
Biomark Med ; 16(3): 197-216, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35112920

RESUMEN

Aim: CYFRA21-1 is a biomarker of cancer and has a promising future in the diagnosis of bladder cancer. The purpose of this study was to assess the diagnostic accuracy of CYFRA21-1 for bladder cancer. Methods: We included articles from the Cochrane Library, Web of Science, PubMed and Embase. Meta-DiSc 1.4 and Stata 12.0 were used for data analysis. Results: Twenty-eight articles were analyzed, and the results are as follows: sensitivity, specificity, PLR, NLR, DOR and AUC were 0.69 (95% CI [0.67, 0.71]), 0.81 (95% CI [0.80, 0.83]), 5.99 (95% CI [4.42, 8.11]), 0.31 (95% CI [0.25, 0.38]), 24.58 (95% CI [15.15, 39.89]) and 0.8917, respectively. Conclusion: CYFRA21-1 has a high diagnostic efficiency for bladder cancer.


Asunto(s)
Queratina-19 , Neoplasias de la Vejiga Urinaria , Antígenos de Neoplasias , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico
15.
Asia Pac J Clin Oncol ; 18(2): e39-e45, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33724673

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common cause of cancer mortality worldwide. NSCLC has an aggressive phenotype and poor prognosis, and is quite heterogeneous without effective and specific targeted therapies. Therefore, exploring new tumor markers and drug targets for NSCLC is crucial towards individualized treatment. Here, we demonstrate that enkurin domain containing 1 (ENKD1), a protein with unknown structure and function, is significantly downregulated in NSCLC tumor tissues compared with their non-tumor counterparts. We also show that ENKD1 expression is decreased in NSCLC cells compared to normal human lung epithelial cells. EdU incorporation, wound healing, and transwell invasion assays reveal that ENKD1 regulates the proliferation, migration, and invasion of NSCLC cells. Collectively, these results suggest that ENKD1 plays an important role in NSCLC progression and that ENKD1 is a tumor marker and a potential molecular drug target for the treatment of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología
17.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769178

RESUMEN

Autophagy plays a critical role in nutrient recycling and stress adaptations. However, the role of autophagy has not been extensively investigated in crop plants. In this study, soybean autophagy-related gene 2 (GmATG2) was silenced, using virus-induced silencing (VIGS) mediated by Bean pod mottle virus (BPMV). An accelerated senescence phenotype was exclusively observed for the GmATG2-silenced plants under dark conditions. In addition, significantly increased accumulation of both ROS and SA as well as a significantly induced expression of the pathogenesis-related gene 1 (PR1) were also observed on the leaves of the GmATG2-silenced plants, indicating an activated immune response. Consistent with this, GmATG2-silenced plants exhibited a significantly enhanced resistance to Pseudomonas syringae pv. glycinea (Psg) relative to empty vector control plants (BPMV-0). Notably, the activated immunity of the GmATG2-silenced plants was independent of the MAPK signaling pathway. The fact that the accumulation levels of ATG8 protein and poly-ubiquitinated proteins were significantly increased in the dark-treated GmATG2-silenced plants relative to the BPMV-0 plants indicated that the autophagic degradation is compromised in the GmATG2-silenced plants. Together, our results indicated that silencing GmATG2 compromises the autophagy pathway, and the autophagy pathway is conserved in different plant species.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Senescencia Celular , Glycine max , Enfermedades de las Plantas , Pseudomonas syringae/inmunología , Proteínas de Soja , Autofagia/genética , Autofagia/inmunología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Comovirus/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Proteolisis , Proteínas de Soja/genética , Proteínas de Soja/inmunología , Glycine max/genética , Glycine max/inmunología , Glycine max/microbiología , Glycine max/virología
18.
Nanomaterials (Basel) ; 11(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204887

RESUMEN

The incorporation of nonmetal group dopants into a graphitic carbon nitride (g-C3N4) framework is fabricated by adding a small amount of hexamethylenetetramine during the thermal polymerization process. The material shows an excellent visible-light photocatalytic H2 production performance that is eight times higher than bulk g-C3N4. This outstanding performance is ascribed to the introducing of N-doped carbon, which not only enhances the light absorption and favorsa narrower band gap, but also upshifts the conductionband (CB) potential, resulting in a better reduction ability of electrons. This discovery has potential significancefor the designing of high performance, economic, and environmental friendly photocatalyst for solar energy conversion.

19.
J Clin Lab Anal ; 35(6): e23783, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33934395

RESUMEN

BACKGROUND: Auditory neuropathy is a cause of hearing loss that has been studied in a number of animal models. Signal transmission from hair cells to spiral ganglion neurons plays an important role in normal hearing. CYLD is a microtubule-binding protein, and deubiquitinase involved in the regulation of various cellular processes. In this study, we used Cyld knockout (KO) mice and nerve cell lines to examine whether CYLD is associated with auditory neuropathy. METHODS: Hearing of Cyld KO mice was studied using the TDT RZ6 auditory physiology workstation. The expression and localization of CYLD in mouse cochlea and cell lines were examined by RT-PCR, immunoblotting, and immunofluorescence. CYLD expression was knocked down in SH-SY5Y cells by shRNAs and in PC12 and N2A cells by siRNAs. Nerve growth factor and retinoic acid were used to induce neurite outgrowth, and the occurrence and length of neurites were statistically analyzed between knockdown and control groups. RESULTS: Cyld KO mice had mild hearing impairment. Moreover, CYLD was widely expressed in mouse cochlear tissues and different nerve cell lines. Knocking down CYLD significantly reduced the length and proportion of neurites growing from nerve cells. CONCLUSIONS: The abnormal hearing of Cyld KO mice might be caused by a decrease in the length and number of neurites growing from auditory nerve cells in the cochlea, suggesting that CYLD is a key protein affecting hearing.


Asunto(s)
Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Pérdida Auditiva Central/genética , Proyección Neuronal/fisiología , Factores de Edad , Animales , Línea Celular Tumoral , Cóclea/fisiología , Pérdida Auditiva/genética , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuritas/fisiología , Células PC12 , Ratas , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
20.
Front Pharmacol ; 12: 643089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841160

RESUMEN

Long-term exposure to UVB (280-320 nm) can cause oxidative skin damage, inflammatory injury, and skin cancer. Research on nicotinamide mononucleotide (NMN) and lactic acid bacteria (LAB) with regard to antioxidation, anti-inflammation, and prevention of other age-related diseases has received increasing attention. In the present study, the in vitro antioxidant analysis showed that NMN combined with Lactobacillus fermentum TKSN041 (L. fermentum TKSN041) has a high scavenging ability on hydroxyl (OH), 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and it also possess a good total antioxidant capacity. The animal experimental results show that NMN combined with LAB maintained normal liver morphology of mice and reduced pathological damage to murine skin. NMN combined with LAB significantly increased the serum levels of total superoxide dismutase (T-SOD), catalase (CAT), and interleukin (IL)-10, but reduced the levels of malondialdehyde, advanced glycation end products, tumor necrosis factor (TNF)-α, and IL-6. NMN combined with LAB increased T-SOD, CAT, IL-10, Na+-K+-ATPase, and NAD+ levels in the skin, but reduced TNF-α level in the skin. NMN combined with LAB increased the mRNA expression levels of SOD1, CAT, glutathione (GSH), inhibitor of NF-κB (IκB-α), IL-10, AMP-activated protein kinase (AMPK), adaptor protein, phosphotyros ineinteraction, PH domain and leucine zipper containing 1 (APPL1), peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), and forkhead transcription factor O (FOXO) in the skin and liver, but decreased the mRNA expression levels of nuclear factor (NF)-κBp65, TNF-α, IL-6, and rapamycin target protein (mTOR). NMN combined with LAB increased the protein expression levels of AMPK, IκB-α, SOD1, and CAT in the skin tissues and reduced protein expression of NF-κBp65. NMN combined with L. fermentum TKSN041 improved murine skin damage caused by UVB irradiation, and the protective mechanism may be related to activation of the AMPK signaling pathway. The results of this study are expected to provide a reference for preventing and the treating skin photoaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...