Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2319060121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753516

RESUMEN

Multicellular organisms are composed of many tissue types that have distinct morphologies and functions, which are largely driven by specialized proteomes and interactomes. To define the proteome and interactome of a specific type of tissue in an intact animal, we developed a localized proteomics approach called Methionine Analog-based Cell-Specific Proteomics and Interactomics (MACSPI). This method uses the tissue-specific expression of an engineered methionyl-tRNA synthetase to label proteins with a bifunctional amino acid 2-amino-5-diazirinylnonynoic acid in selected cells. We applied MACSPI in Caenorhabditis elegans, a model multicellular organism, to selectively label, capture, and profile the proteomes of the body wall muscle and the nervous system, which led to the identification of tissue-specific proteins. Using the photo-cross-linker, we successfully profiled HSP90 interactors in muscles and neurons and identified tissue-specific interactors and stress-related interactors. Our study demonstrates that MACSPI can be used to profile tissue-specific proteomes and interactomes in intact multicellular organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteoma , Proteómica , Animales , Caenorhabditis elegans/metabolismo , Proteómica/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Metionina-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Especificidad de Órganos , Músculos/metabolismo , Neuronas/metabolismo
2.
Nature ; 626(7998): 411-418, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297130

RESUMEN

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Asunto(s)
Deshidrocolesteroles , Ferroptosis , Humanos , Membrana Celular/metabolismo , Colesterol/biosíntesis , Colesterol/metabolismo , Sistemas CRISPR-Cas/genética , Deshidrocolesteroles/metabolismo , Genoma Humano , Enfermedades Renales/metabolismo , Membranas Mitocondriales/metabolismo , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología , Fosfolípidos/metabolismo , Daño por Reperfusión/metabolismo
3.
Opt Lett ; 47(11): 2710-2713, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648911

RESUMEN

We demonstrate second-harmonic generation (SHG) microscopy excited by the ∼890-nm light frequency-doubled from a 137-fs, 19.4-MHz, and 300-mW all-fiber mode-locked laser centered at 1780 nm. The mode-locking at the 1.7-µm window is realized by controlling the emission peak of the gain fiber, and uses the dispersion management technique to broaden the optical spectrum up to 30 nm. The spectrum is maintained during the amplification and the pulse is compressed by single-mode fibers. The SHG imaging performance is showcased on a mouse skull, leg, and tail. Two-photon fluorescence imaging is also demonstrated on C. elegans labeled with green and red fluorescent proteins. The frequency-doubled all-fiber laser system provides a compact and efficient tool for SHG and fluorescence microscopy.


Asunto(s)
Caenorhabditis elegans , Rayos Láser , Animales , Ratones , Microscopía Fluorescente , Imagen Óptica , Fotones
4.
Front Cell Dev Biol ; 8: 290, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411707

RESUMEN

Renal cell carcinoma (RCC) is the most common type of kidney cancer. It has a poor prognosis, with approximately 20-30% of patients developing recurrent and/or metastatic diseases that is relatively high resistant to conventional therapy. Resisting cell death is a hallmark of cancer cells. Apoptosis is a form of programmed cell death mediated by the activation of caspases. Necroptosis is a form of regulated necrosis that relies on the activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL), the substrate of RIPK3. Cancer cells often display apoptosis resistance via upregulation of anti-apoptotic genes and defective necroptosis due to the epigenetic silence of Ripk3. MicroRNAs (miRNAs) are non-coding small RNAs that are involved in numerous biological processes including cell proliferation, differentiation and death. In this study, we screened a set of ∼120 miRNAs for apoptosis-regulating miRNAs and identified miR-381-3p as a suppressor of TNF-induced apoptosis in various cancer cells. Ectopic expression of miR-381-3p inhibits the activation of caspase-8 and caspase-3. The expression level of miR-381-3p inversely correlates with the sensitivity of cancer cells to TNF-induced apoptosis. Moreover, we found that overexpression of miR-381-3p blocks TNF-induced necroptosis by inhibiting the activation of RIPK3 and MLKL. Of note, Kaplan-Meier Plotter analysis demonstrates that papillary RCC patients with high miR-381-3p expression have a lower overall survival than those with low expression level of miR-381-3p. Importantly, miR-381-3p overexpression promotes colony formation in human renal cancer cells. Thus, miR-381-3p acts as an oncogenic miRNA that counteracts both apoptotic and necroptotic signaling pathways. Our findings highlight miR-381-3p as a biomarker for predicting sensitivity to apoptosis and necroptosis, and as a possible therapeutic target for RCC.

5.
Apoptosis ; 25(5-6): 441-455, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32418059

RESUMEN

Smac/Diablo is a pro-apoptotic protein via interaction with inhibitors of apoptosis proteins (IAPs) to relieve their inhibition of caspases. Smac mimetic compounds (also known as antagonists of IAPs) mimic the function of Smac/Diablo and sensitize cancer cells to TNF-induced apoptosis. However, the majority of cancer cells are resistant to Smac mimetic alone. Doxorubicin is a widely used chemotherapeutic drug and causes adverse effect of cardiotoxicity in many patients. Therefore, it is important to find strategies of combined chemotherapy to increase chemosensitivity and reduce the adverse effects. Here, we report that doxorubicin synergizes with Smac mimetic to trigger TNF-mediated apoptosis, which is mechanistically distinct from doxorubicin-induced cell death. Doxorubicin sensitizes cancer cells including human pancreatic and colorectal cancer cells to Smac mimetic treatment. The combined treatment leads to synergistic induction of TNFα to initiate apoptosis through activating NF-κB and c-Jun signaling pathways. Knockdown of caspase-8 or knockout of FADD significantly blocked apoptosis synergistically induced by Smac mimetic and doxorubicin, but had no effect on cell death caused by doxorubicin alone. Moreover, Smac mimetic and doxorubicin-induced apoptosis requires receptor-interacting protein kinase 1 (RIPK1) and its deubiquitinating enzyme cylindromatosis (CYLD), not A20. These in vitro findings demonstrate that combination of Smac mimetic and doxorubicin synergistically triggers apoptosis through the TNF/CYLD/RIPK1/FADD/caspase-8 signaling pathway. Importantly, the combined treatment induced in vivo synergistic anti-tumor effects in the xenograft tumor model. Thus, the combined therapy using Smac mimetic and doxorubicin presents a promising apoptosis-inducing strategy with great potential for the development of anti-cancer therapy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Materiales Biomiméticos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Enzima Desubiquitinante CYLD/genética , Doxorrubicina/farmacología , Proteínas Mitocondriales/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , Sinergismo Farmacológico , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas Mitocondriales/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Ecol Evol ; 10(6): 3004-3016, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211172

RESUMEN

Notopterygium incisum Ting ex H. T. Chang is a rare and endangered traditional Chinese medicinal plant. In this research, we built a comprehensive habitat suitability (CHS) model to analyze the potential suitable habitat distribution of this species in the present and future in China. First, using nine different algorithms, we built an ensemble model to explore the possible impacts of climate change on the habitat distribution of this species. Then, based on this model, we built a CHS model to further identify the distribution characteristics of N. incisum-suitable habitats in three time periods (current, 2050s, and 2070s) while considering the effects of soil and vegetation conditions. The results indicated that the current suitable habitat for N. incisum covers approximately 83.76 × 103 km2, and these locations were concentrated in the Tibet Autonomous Region, Gansu Province, Qinghai Province, and Sichuan Province. In the future, the areas of suitable habitat for N. incisum would significantly decrease and would be 69.53 × 103 km2 and 60.21 × 103 km2 in the 2050s and 2070s, respectively. However, the area of marginally suitable habitat would remain relatively stable. This study provides a more reliable and comprehensive method for modelling the current and future distributions of N. incisum, and it provides valuable insights for highlighting priority areas for medicinal plant conservation and resource utilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...