Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Int J Biol Sci ; 20(1): 29-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164183

RESUMEN

Background: Thoracic aortic dissection (TAD) is one of the cardiovascular diseases with high incidence and fatality rates. Vascular smooth muscle cells (VSMCs) play a vital role in TAD formation. Recent studies have shown that extracellular S100A4 may participate in VSMCs regulation. However, the mechanism(s) underlying this association remains elusive. Consequently, this study investigated the role of S100A4 in VSMCs regulation and TAD formation. Methods: Hub genes were screened based on the transcriptome data of aortic dissection in the Gene Expression Synthesis database. Three-week-old male S100A4 overexpression (AAV9- S100A4 OE) and S100A4 knockdown (AAV9- S100A4 KD) mice were exposed to ß-aminopropionitrile monofumarate through drinking water for 28 days to create the murine TAD model. Results: S100A4 was observed to be the hub gene in aortic dissection. Furthermore, overexpression of S100A4 was exacerbated, whereas inhibition of S100A4 significantly improved TAD progression. In the TAD model, the S100A4 was observed to aggravate the phenotypic transition of VSMCs. Additionally, lysyl oxidase (LOX) was an important target of S100A4 in TAD. S100A4 interacted with LOX in VSMCs, reduced mature LOX (m-LOX), and decreased elastic fiber deposition, thereby disrupting extracellular matrix homeostasis and promoting TAD development. Elastic fiber deposition in human aortic tissues was negatively correlated with the expression of S100A4, which in turn, was negatively correlated with LOX. Conclusions: Our data showed that S100A4 modulates TADprogression, induces lysosomal degradation of m-LOX, and reduces the deposition of elastic fibers by interacting with LOX, thus contributing to the disruption of extracellular matrix homeostasis in TAD. These findings suggest that S100A4 may be a new target for the prevention and treatment of TAD.


Asunto(s)
Disección Aórtica , Disección de la Aorta Torácica , Masculino , Humanos , Ratones , Animales , Disección Aórtica/genética , Aorta , Matriz Extracelular , Proteína de Unión al Calcio S100A4/genética
2.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38076912

RESUMEN

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A ß ; in plaques and in CAA; further, recombinant MDK and PTN enhance A ß ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A ß 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A ß ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

3.
Mol Ther Methods Clin Dev ; 31: 101146, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027063

RESUMEN

Enhancing production of protein cargoes delivered by gene therapies can improve efficacy by reducing the amount of vector or simply increasing transgene expression levels. We explored the utility of a 126-amino acid collagen domain (CD) derived from the C1qTNF3 protein as a fusion partner to chaperone secreted proteins, extracellular "decoy receptor" domains, and single-chain variable fragments (scFvs). Fusions to the CD domain result in multimerization and enhanced levels of secretion of numerous fusion proteins while maintaining functionality. Efficient creation of bifunctional proteins using the CD domain is also demonstrated. Recombinant adeno-associated viral vector delivery of the CD with a signal peptide resulted in high-level expression with minimal biological impact as assessed by whole-brain transcriptomics. As a proof-of-concept in vivo study, we evaluated three different anti-amyloid Aß scFvs (anti-Aß scFvs), alone or expressed as CD fusions, following viral delivery to neonatal CRND8 mice. The CD fusion increased half-life, expression levels, and improved efficacy for amyloid lowering of a weaker binding anti-Aß scFv. These studies validate the potential utility of this small CD as a fusion partner for secretory cargoes delivered by gene therapy and demonstrate that it is feasible to use this CD fusion to create biotherapeutic molecules with enhanced avidity or bifunctionality.

4.
Res Sq ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014191

RESUMEN

The promise of immunotherapy to induce long-term durable responses in conventionally treatment resistant tumors like glioblastoma (GBM) has given hope for patients with a dismal prognosis. Yet, few patients have demonstrated a significant survival benefit despite multiple clinical trials designed to invigorate immune recognition and tumor eradication. Insights gathered over the last two decades have revealed numerous mechanisms by which glioma cells resist conventional therapy and evade immunological detection, underscoring the need for strategic combinatorial treatments as necessary to achieve appreciable therapeutic effects. However, new combination therapies are inherently difficult to develop as a result of dose-limiting toxicities, the constraints of the blood-brain barrier, and the suppressive nature of the GBM tumor microenvironment (TME). GBM is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment, infiltration, and activation. We have developed a novel recombinant adeno-associated virus (AAV) gene therapy strategy that enables focal and stable reconstitution of the GBM TME with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for cytotoxic T lymphocytes (CTLs). By precisely manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by CD8-postive cytotoxic lymphocytes, sensitizing GBM to anti-PD-1 immune checkpoint blockade (ICB). These effects are accompanied by immunologic signatures evocative of an inflamed and responsive TME. These findings support targeted AAV gene therapy as a promising adjuvant strategy for reconditioning GBM immunogenicity given its excellent safety profile, TME-tropism, modularity, and off-the-shelf capability, where focal delivery bypasses the constrains of the blood-brain barrier, further mitigating risks observed with high-dose systemic therapy.

5.
Virol Sin ; 38(6): 922-930, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839549

RESUMEN

As one of the deadliest viruses, Ebola virus (EBOV) causes lethal hemorrhagic fevers in humans and nonhuman primates. The suppression of innate immunity leads to robust systemic virus replication of EBOV, leading to enhanced transmission. However, the mechanism of EBOV-host interaction is not fully understood. Here, we identified multiple dysregulated genes in early stage of EBOV infection through transcriptomic analysis, which are highly clustered to Jak-STAT signaling. EBOV VP35 and VP30 were found to inhibit type I interferon (IFN) signaling. Moreover, exogenous expression of VP35 blocks the phosphorylation of endogenous STAT1, and suppresses nuclear translocation of STAT1. Using serial truncated mutations of VP35, N-terminal 1-220 amino acid residues of VP35 were identified to be essential for blocking on type I IFN signaling. Remarkably, VP35 of EBOV suppresses type I IFN signaling more efficiently than those of Bundibugyo virus (BDBV) and Marburg virus (MARV), resulting in stable replication to facilitate the pathogenesis. Altogether, this study enriches understanding on EBOV evasion of innate immune response, and provides insights into the interplay between filoviruses and host.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Interferón Tipo I , Humanos , Animales , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Inmunidad Innata , Ebolavirus/genética , Replicación Viral
6.
Front Immunol ; 14: 1244159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901240

RESUMEN

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods: We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results: We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion: Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.


Asunto(s)
Sulindac , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Sulindac/farmacología , Sulindac/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide , Neoplasias de la Mama Triple Negativas/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Modelos Animales de Enfermedad
7.
J Environ Qual ; 52(6): 1166-1177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37683113

RESUMEN

A laboratory experiment is conducted to investigate the effects of organic carbon (OC) from riverine and marine sediments on the degradation of ring-14 C-labeled nonylphenol (14 C-NP) by hydrogen peroxide (H2 O2 ). Researchers have isolated demineralized OC (DM) before and after oxidation, namely, DM and resistant OC (ROC) fractions, respectively. The structures of DM and ROC are characterized using solid-state 13 C nuclear magnetic resonance. Unstable structures (O-alkyl, OCH3 /NCH, and COO/NC=O) show a significant and positive correlation with the degradation of 14 C-NP (R2  > 0.73, p < 0.05), thus suggesting that the NP absorbed in the unstable structures is easily degraded because of the decomposition of unstable components. The stable structures (alkyl C and non-protonated aromatic C [Arom C─C]) exhibit a significant and negative correlation with the degradation of 14 C-NP (R2  > 0.69, p < 0.05), thus suggesting that the NP absorbed and protected in these resistant structures is minimally degraded. The significant correlations among the degradation kinetic parameters (Frap and Fslow ), OC structures (Falip and Farom ), and microporosity further illustrate the important protective roles of OC structures and micropores in the degradation of 14 C-NP by H2 O2 (R2  > 0.69, p < 0.05). The parent NP fraction that desorbed into the aqueous solution or extracted is completely degraded, indicating preferential degradation of the easily desorbed NP. This study provides important insights into the NP degradation mechanism in sediment-water systems, particularly regarding sediment OC structures and microporosity.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Carbono/química , Sedimentos Geológicos/química , Fenoles/análisis , Fenoles/química , Fenoles/metabolismo
8.
Sci Total Environ ; 904: 166754, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683871

RESUMEN

The structure and constituents of sedimentary organic matter (SOM) in the degradation of benzene ring-14C labeled 4-nonylphenol (14C-NP) by sodium persulfate (Na2S2O8) were investigated. Na2S2O8 mineralized over 84 % of 14C-NP to 14CO2, and no parent unlabeled 4-nonylphenol (NP) compounds were detected in the water-soluble/supernatant phase or extractable residues. Organic carbon (OC) was sequentially separated from six sediment samples collected from the Pearl River (BET), estuary (GSD), continental shelf (S11 and S21), and deep sea (M9 and M10). Demineralized OC (DM), unstable OC (USOC), nonhydrolyzable OC (NHC), and resistant OC (ROC) were obtained and characterized using solid-state 13C nuclear magnetic resonance (SS-NMR). The correlations among USOC, NHC, and the degradation kinetic constant of 14C-NP (kNP) were significant (R2 > 0.86, p < 0.01), indicating that USOC and NHC were the main factors controlling 14C-NP degradation. SOM structure and constituent analyses indicated that O-alkyl C + OCH3/NCH C + COO/NC=O C and carbohydrate + protein were positively related to Ln(kNP) (R2 > 0.72, p < 0.05) because these structures were unstable. However, the stable structures (Alkyl C and Arom CC) and constituents (sporopollenin, algaenan, and char) hindered 14C-NP degradation because they were negatively related to Ln(kNP) (R2 > 0.81, p < 0.05). The OC removal rate was positively correlated with 14C-NP degradation (R2 > 0.86, p < 0.01), indicating that the NP was primarily degraded in parallel with the breakdown of SOM. Stoichiometric analysis showed that Na2S2O8 effectively oxidized over 58 % of the OC to CO2, and the electron transfer efficiency was 17.2-69.5 %. This study is the first to emphasize the importance of SOM degradation, structure, and constituents in the degradation of NP by persulfate.

9.
J Virol ; 97(3): e0194222, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36856422

RESUMEN

African swine fever virus (ASFV) is a large DNA virus that causes African swine fever (ASF), an acute and hemorrhagic disease in pigs with lethality rates of up to 100%. To date, how ASFV efficiently suppress the innate immune response remains enigmatic. In this study, we identified ASFV cysteine protease pS273R as an antagonist of type I interferon (IFN). Overexpression of pS273R inhibited JAK-STAT signaling triggered by type I IFNs. Mechanistically, pS273R interacted with STAT2 and recruited the E3 ubiquitin ligase DCST1, resulting in K48-linked polyubiquitination at K55 of STAT2 and subsequent proteasome-dependent degradation of STAT2. Furthermore, such a function of pS273R in JAK-STAT signaling is not dependent on its protease activity. These findings suggest that ASFV pS273R is important to evade host innate immunity. IMPORTANCE ASF is an acute disease in domestic pigs caused by infection with ASFV. ASF has become a global threat with devastating economic and ecological consequences. To date, there are no commercially available, safe, and efficacious vaccines to prevent ASFV infection. ASFV has evolved a series of strategies to evade host immune responses, facilitating its replication and transmission. Therefore, understanding the immune evasion mechanism of ASFV is helpful for the development of prevention and control measures for ASF. Here, we identified ASFV cysteine protease pS273R as an antagonist of type I IFNs. ASFV pS273R interacted with STAT2 and mediated degradation of STAT2, a transcription factor downstream of type I IFNs that is responsible for induction of various IFN-stimulated genes. pS273R recruited the E3 ubiquitin ligase DCST1 to enhance K48-linked polyubiquitination of STAT2 at K55 in a manner independent of its protease activity. These findings suggest that pS273R is important for ASFV to escape host innate immunity, which sheds new light on the mechanisms of ASFV immune evasion.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteasas de Cisteína , Interferón Tipo I , Animales , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Inmunidad Innata/genética , Interferón Tipo I/metabolismo , Sus scrofa , Porcinos , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Transcripción STAT2/metabolismo , Transducción de Señal
10.
Environ Pollut ; 309: 119740, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35817300

RESUMEN

In this study, the role of organic matter structure and microporosity in the adsorption and degradation of radioactive nonylphenol in sediments treated with potassium ferrate solutions was investigated. The demineralized fractions and acid non-hydrolyzable fractions were isolated and characterized via advanced solid-state 13C nuclear magnetic resonance and CO2 gas adsorption technology, respectively. Radioactive nonylphenol in the sediments was also fractionated into 14CO2, water-soluble residues, extractable residues, and strongly bound residues after treatment with potassium ferrate. A first-order, two-compartment kinetic model well described the mineralization and degradation kinetics of radioactive nonylphenol in the sediment (R2 > 0.99). The degradation percentages of spiked nonylphenol were highly negatively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R2 > 0.82, p < 0.01). The percentages of adsorbed parent nonylphenol residues were highly positively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R2 > 0.90, p < 0.01). The parent nonylphenol compound desorbed into the aqueous phase and was completely degraded. This study is the first to demonstrate the important role of aromatic carbon, aliphatic carbon, and microporosity in acid non-hydrolyzable fractions on the degradation of nonylphenol during the potassium ferrate oxidation treatment process.


Asunto(s)
Dióxido de Carbono , Sedimentos Geológicos , Adsorción , Carbono , Sedimentos Geológicos/química , Compuestos de Hierro , Fenoles , Compuestos de Potasio
11.
Appl Bionics Biomech ; 2022: 1676355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355793

RESUMEN

In order to be able to make full use of domain knowledge to improve the performance of skill word extraction, this paper proposes a skill word extraction method based on a combination of deep learning and corpus features. Skill word extraction is transformed into a sequence annotation problem, and based on the basic model of sequence annotation, Bi-LSTM-CRF, corpus features are added to the input layer, and the output of the input layer is connected with the Bi-LSTM output as the input of the CRF layer. The experimental results show timely updating of the question bank, paying attention to the quality of vocational skill identification, and strictly managing the issuance of vocational qualification false certificates.

13.
PLoS Pathog ; 18(1): e1010270, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089988

RESUMEN

ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-ß, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis.


Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Inmunidad Innata/inmunología , Factores de Virulencia/inmunología , Virulencia/inmunología , Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/inmunología , Animales , ARN Polimerasa III/inmunología , Receptores de Superficie Celular/inmunología , Porcinos
14.
Hepatology ; 75(6): 1507-1522, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34689362

RESUMEN

BACKGROUND AND AIMS: NAFLD is a progressive disease without known effective drug treatments. Switch-associated protein 70 (SWAP70) is a guanine nucleotide exchange factor that participates in the regulation of many cellular processes. However, the role of SWAP70 in NAFLD remains unclear. This study aimed to identify the function and mechanism of SWAP70 in NAFLD. APPROACH AND RESULTS: The results showed that the expression of SWAP70 was significantly increased in mice and hepatocytes after metabolic stimulation. Overexpression of SWAP70 in hepatocytes suppressed lipid deposition and inflammation, and SWAP70 knockdown created the inverse effect. Using hepatocyte-specific Swap70 knockout and overexpression mice fed a high-fat, high-cholesterol diet, we demonstrated that SWAP70 suppressed the progression of nonalcoholic steatohepatitis by inhibiting lipid accumulation, inflammatory response, and fibrosis. Mechanically, RNA sequencing analysis and immunoprecipitation assays revealed that SWAP70 inhibited the interaction between transforming growth factor ß-activated kinase 1 (TAK1) binding protein 1 and TAK1 and sequentially suppressed the phosphorylation of TAK1 and subsequent c-Jun N-terminal kinase/P38 signaling. Inhibition of TAK1 activation blocked hepatocyte lipid deposition and inflammation caused by SWAP70 knockdown. CONCLUSIONS: SWAP70 is a protective molecule that can suppress the progression of NAFLD by inhibiting hepatic steatosis and inflammation. SWAP70 may be important for mitigating the progression of NAFLD.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología
15.
J Immunol ; 207(12): 3090-3097, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34799425

RESUMEN

The proinflammatory cytokine IL-1ß is a crucial mediator of inflammatory responses. IL-1ß-induced signaling is finely regulated by various mechanisms, and its imbalance is involved in a variety of diseases. In this study, we identified FAM177A1, a protein of unknown function, as a negative regulator of IL-1ß-induced signaling in human cells. Overexpression of FAM177A1 inhibited IL-1ß-triggered activation of NF-κB and transcription of inflammatory genes, whereas knockdown of FAM177A1 showed the opposite effects. Mechanistically, FAM177A1 competitively bound to the E3 ubiquitin ligase TRAF6 and impaired its interaction with the E2-conjugating enzyme Ubc13; therefore, it inhibited TRAF6-mediated polyubiquitination and recruitment of downstream signaling molecules. These findings reveal a function of FAM177A1 and promote our understanding of the regulatory mechanisms of IL-1ß-induced inflammatory responses.


Asunto(s)
Interleucina-1beta , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Humanos , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
16.
J Biol Chem ; 297(5): 101190, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517008

RESUMEN

African swine fever virus (ASFV) is a large DNA virus that is highly contagious and pathogenic in domestic pigs with a mortality rate up to 100%. However, how ASFV suppresses JAK-STAT1 signaling to evade the immune response remains unclear. In this study, we found that the ASFV-encoded protein MGF-505-7R inhibited proinflammatory IFN-γ-mediated JAK-STAT1 signaling. Mechanistically, MGF-505-7R was found to interact with JAK1 and JAK2 and mediate their degradation. Further study indicated that MGF-505-7R promoted degradation of JAK1 and JAK2 by upregulating the E3 ubiquitin ligase RNF125 expression and inhibiting expression of Hes5, respectively. Consistently, MGF-505-7R-deficient ASFV induced high levels of IRF1 expression and displayed compromised replication both in primary porcine alveolar macrophages and pigs compared with wild-type ASFV. Furthermore, MGF-505-7R deficiency attenuated the virulence of the ASFV and pathogenesis of ASF in pigs. These findings suggest that the JAK-STAT1 axis mediates the innate immune response to the ASFV and that MGF-505-7R plays a critical role in the virulence of the ASFV and pathogenesis of ASF by antagonizing this axis. Thus, we conclude that deletion of MGF-505-7R may serve as a strategy to develop attenuated vaccines against the ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Janus Quinasa 1 , Janus Quinasa 2 , Sistema de Señalización de MAP Quinasas , Macrófagos Alveolares , Proteínas Virales , Factores de Virulencia , Fiebre Porcina Africana/genética , Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/patología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Virus de la Fiebre Porcina Africana/patogenicidad , Animales , Línea Celular , Humanos , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
Sci Total Environ ; 761: 144191, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33352343

RESUMEN

Activated, oxidized, and solvent-extracted black carbon samples (BCs) were produced from a shale kerogen at temperatures ranging from 250 to 500 °C by chemical activation regents (KOH, ZnCl2), oxidative regents (H2O2, NaClO), and organic solvents, respectively. Extracted organic matter (EOM) and polycyclic aromatic hydrocarbons (PAHs) were quantified in BCs, and they increased and then decreased with increasing temperature. Sorption and desorption isotherms of nonylphenol (NP) on BCs were compared with those previously reported for phenanthrene (Phen). The desorption hysteresis coefficients of NP were greater than those of Phen, while the adsorption capacities of NP were different from those of Phen. The micropore volume and micropore size were critical factors for the micropore filling mechanism of NP in BCs. The ZnCl2 activation and oxidation treatments were observed to effectively enhance the adsorption of NP and to remove native PAHs from the investigated BCs. But the KOH activation and oxidation treatments were not as efficient as expected. Moreover, the NP desorption hysteresis suggested that a hydrogen bonding and micropore deformation mechanism occurred on the extracted activated BCs. This finding improves our understanding of the sorption and desorption mechanisms of NP from the perspective of the modified BCs and their applications.

18.
Proc Natl Acad Sci U S A ; 117(38): 23707-23716, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32878999

RESUMEN

Trafficking of toll-like receptor 3 (TLR3) from the endoplasmic reticulum (ER) to endolysosomes and its subsequent proteolytic cleavage are required for it to sense viral double-stranded RNA (dsRNA) and trigger antiviral response, yet the underlying mechanisms remain enigmatic. We show that the E3 ubiquitin ligase TRIM3 is mainly located in the Golgi apparatus and transported to the early endosomes upon stimulation with the dsRNA analog poly(I:C). TRIM3 mediates K63-linked polyubiquitination of TLR3 at K831, which is enhanced following poly(I:C) stimulation. The polyubiquitinated TLR3 is recognized and sorted by the ESCRT (endosomal sorting complex required for transport) complexes to endolysosomes. Deficiency of TRIM3 impairs TLR3 trafficking from the Golgi apparatus to endosomes and its subsequent activation. Trim3-/- cells and mice express lower levels of antiviral genes and show lower levels of inflammatory response following poly(I:C) but not lipopolysaccharide (LPS) stimulation. These findings suggest that TRIM3-mediated polyubiquitination of TLR3 represents a feedback-positive regulatory mechanism for TLR3-mediated innate immune and inflammatory responses.


Asunto(s)
Proteínas Portadoras/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/inmunología , Inmunidad Innata/inmunología , Receptor Toll-Like 3/inmunología , Ubiquitinación/inmunología , Animales , Antivirales/inmunología , Células HEK293 , Humanos , Lisosomas/inmunología , Ratones , Transporte de Proteínas/inmunología , ARN Viral/inmunología , Transducción de Señal/inmunología
19.
Mar Pollut Bull ; 160: 111527, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32861935

RESUMEN

The distribution and bioconcentration of polycyclic aromatic hydrocarbons (PAHs) in water, suspended particulate material (SPM), algae, and zooplankton samples from the Pearl River Delta (PRD), South China, were investigated. The PAHs in the water and SPM samples is significantly associated with chlorophyll a (Chl a), implying the important role of the aquatic productivity on PAH distribution. PAHs in the water or SPM samples were strongly correlated to dissolved organic carbon (DOC) or algal particulate organic carbon (A-POC). Moreover, the log bioconcentration factor (BCF) values (mL g-1) of PAHs in both the algae and zooplankton samples were linearly related to their log octanol-water coefficient (Kow) values. However, the slopes of these relationships were negatively correlated with Chl a, attributing to the difference in the dominant plankton species or the non-equilibrium exchange between air-water-biota. The above results indicate the important role of trophic levels on the distribution and bioaccumulation of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Bioacumulación , China , Clorofila A , Monitoreo del Ambiente , Sedimentos Geológicos , Material Particulado/análisis , Plancton , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos , Contaminantes Químicos del Agua/análisis
20.
Alzheimers Res Ther ; 12(1): 61, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430033

RESUMEN

BACKGROUND: γ-Secretase is a multiprotein protease that cleaves amyloid protein precursor (APP) and other type I transmembrane proteins. It has two catalytic subunits, presenilins 1 and 2 (PS1 and 2). In our previous report, we observed subtle differences in PS1- and PS2-mediated cleavages of select substrates and slightly different potencies of PS1 versus PS2 inhibition for select γ-secretase inhibitors (GSIs) on various substrates. In this study, we investigated whether γ-secretase modulators (GSMs) and inverse γ-secretase modulators (iGSMs) modulate γ-secretase processivity using multiple different substrates. We next used HEK 293T cell lines in which PSEN1 or PSEN2 was selectively knocked out to investigate processivity and response to GSMs and iGSMs. METHODS: For cell-free γ-secretase cleavage assay, recombinant substrates were incubated with CHAPSO-solubilized CHO or HEK 293T cell membrane with GSMs or iGSMs in suitable buffer. For cell-based assay, cDNA encoding substrates were transfected into HEK 293T cells. Cells were then treated with GSMs or iGSMs, and conditioned media were collected. Aß and Aß-like peptide production from cell-free and cell-based assay were measured by ELISA and mass spectrometry. RESULT: These studies demonstrated that GSMs are highly selective for effects on APP, whereas iGSMs have a more promiscuous effect on many substrates. Surprisingly, iGSMs actually appear to act as like GSIs on select substrates. The data with PSEN1 or PSEN2 knocked out HEK 293T reveal that PS1 has higher processivity and response to GSMs than PS2, but PS2 has higher response to iGSM. CONCLUSION: Collectively, these data indicate that GSMs are likely to have limited target-based toxicity. In addition, they show that iGSMs may act as substrate-selective GSIs providing a potential new route to identify leads for substrate-selective inhibitors of certain γ-secretase-mediated signaling events. With growing concerns that long-term ß-secretase inhibitor is limited by target-based toxicities, such data supports continued development of GSMs as AD prophylactics.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Precursor de Proteína beta-Amiloide , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Células HEK293 , Humanos , Presenilina-2/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...