Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(51): 35649-35656, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984296

RESUMEN

Dipyridonyl-substituted derivatives 2-4 of benzene, pyridine, and pyrazine, respectively, were synthesized to examine the ability of 2-pyridone and its protonated species to direct the self-assembly by hydrogen bonding. Structural analysis by single-crystal X-ray diffraction (SCXRD) of 2 and 4 in trifluoroacetic acid demonstrated that salts are formed as a result of the transfer of protons from the acid to the base (organic species) to generate a bis(hydroxypyridinium) dication. However, if no proton transfer takes place like in the case of crystals of 3 grown from DMSO/H2O, the self-assembly is mainly directed by the typical R 2 2(8) hydrogen bond motif of 2-pyridone. These results indicate that the process of converting a neutral 2-pyridonyl group into a hydroxypyridinium cation makes structure prediction difficult. Consequently, examination of proton transfer and assembly of dipyridone and its protonated species are of interest. In combination with SCXRD, Hirshfeld surface analysis (HSA) was also used to have a better understanding on the nature of intermolecular interactions within crystal structures of 2-4. The large number of F···H/H···F, H···O/O···H, H···H, and H···C/C···H contacts revealed by HSA indicates that hydrogen bonding and van der Waals interactions mainly contribute to crystal packing.

2.
ACS Appl Mater Interfaces ; 12(45): 50619-50627, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33103881

RESUMEN

Three new lanthanide metal-organic frameworks IRHs-(1-3) supported by cyamelurate linkers have been synthesized and structurally characterized. The incorporation of numerous heteroatoms (N and O) into the pore walls and the relatively small microchannels of these porous solids enhance bonding force of the host-guest interactions, thus promoting the adsorption of carbon dioxide (CO2) over methane (CH4). The nonpolar covalent bonds in methane also favor the less uptake due to the hydrophilic walls of these frameworks. Grand canonical Monte Carlo simulations were performed to determine the origin of the adsorption. The density isocontour surfaces show that CO2 is mainly adsorbed on the walls composed of organic linkers and around the metal sites, whereas no specific adsorption site is observed for CH4, which indicates weak interactions between the framework and the adsorbed gas. As expected, the simulations show that CH4 is not observed around the metal center due to the presence of H2O molecules. The excellent selectivity of CO2/CH4 binary mixture was predicted by the ideal adsorbed solution theory (IAST) via correlating pure component adsorption isotherms with the Toth model. At 25 °C and 1 bar, the CO2 and CH4 uptakes for IRH-3 were 2.7 and 0.07 mol/kg, respectively, and the IAST predicated selectivity for CO2/CH4 (1:1) reached 27, which is among the best value for MOF materials.

3.
Inorg Chem ; 59(20): 14910-14919, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32902262

RESUMEN

A new synthetic route was carried out via a one-pot reaction to prepare a novel series of amidine/amidinate cobalt complexes 8-10 by mixing ligand 2 (6-pyridin-2-yl-[1,3,5]-triazine-2,4-diamine) with Co(II) in acetonitrile or benzonitrile. We observed that a change of solvent from methanol (used in complex 7, previously reported) to nitrile solvents (MeCN and PhCN) led to the in situ incorporation of the amidine group, ultimately forming 8-10. So far, this is a unique method reported to introduce amidine/amidinate groups into a pyridinyl-substituted diaminotriazine complex. Remarkably, the single crystal X-ray diffraction study (SCXRD) of these new compounds reveals associations involving Janus DATamidine and Janus DATamidinate. A mechanism is proposed to explain the formation of amidine/amidinate groups by investigating the single crystal structures of the possible intermediates 11 and 12 where the cobalt ion acts as a template. These amidine/amidinate cobalt complexes were used as a model to assess the photocatalytic activity for the hydrogen evolution reaction (HER). Complexes 9 and 10 show a 74% and 86% enhancement, respectively, of the catalytic activity towards the HER compared to complex 7. This highlights the structure-property relationship. By examining the novel cobalt complexes described here, we discovered the following: (i) a method to introduce an amidine group into a pyridine DAT-based complex, (ii) the efficiency of amidine complexes to form multiple hydrogen bonds to direct the molecular organization, (iii) the plausible mechanism of formation of amidines based on the SCXRD study, (iv) the modification of the final structure and hence the final properties by varying the reaction conditions, and (v) the utility of amidine complexes towards photocatalytic HER activity.

4.
Org Biomol Chem ; 13(21): 5944-54, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25927345

RESUMEN

A wide range of 4,6-diarylated/heterylated pyridin-2(1H)-one derivatives were synthesized in good to excellent yields from 1,3-diarylated/heterylated-2-propen-1-ones (chalcones) in one pot under metal and base-free conditions. This domino reaction suggests a novel mechanism comprising of Michael addition followed by amination, subsequent intramolecular amidation and finally dehydronitrosation. The usefulness of the designed 4,6-diarylated/heterylated pyridin-2(1H)-one derivatives has further been demonstrated by synthesizing medicinally important 2,4,6-triaryl/heteryl pyridines via Pd-catalyzed cross-coupling reaction.


Asunto(s)
Chalconas/química , Piridinas/síntesis química , Aminación , Catálisis , Chalconas/síntesis química , Ciclización , Modelos Moleculares , Paladio/química , Piridinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...