Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365913

RESUMEN

The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.


Asunto(s)
Medicago truncatula , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , ARN de Transferencia de Serina , Medicago truncatula/genética , Medicago truncatula/microbiología , Bacterias , Fijación del Nitrógeno/fisiología , Estilo de Vida , Nitrógeno , Ribonucleasas , Simbiosis/fisiología
2.
Nat Commun ; 15(1): 773, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316773

RESUMEN

Using long-read sequencing, we assembled and unzipped the polyploid genomes of Meloidogyne incognita, M. javanica and M. arenaria, three of the most devastating plant-parasitic nematodes. We found the canonical nematode telomeric repeat to be missing in these and other Meloidogyne genomes. In addition, we find no evidence for the enzyme telomerase or for orthologs of C. elegans telomere-associated proteins, suggesting alternative lengthening of telomeres. Instead, analyzing our assembled genomes, we identify species-specific composite repeats enriched mostly at one extremity of contigs. These repeats are G-rich, oriented, and transcribed, similarly to canonical telomeric repeats. We confirm them as telomeric using fluorescent in situ hybridization. These repeats are mostly found at one single end of chromosomes in these species. The discovery of unusual and specific complex telomeric repeats opens a plethora of perspectives and highlights the evolutionary diversity of telomeres despite their central roles in senescence, aging, and chromosome integrity.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Caenorhabditis elegans/genética , Hibridación Fluorescente in Situ , Tylenchoidea/genética , Telómero/genética , Poliploidía
3.
Sci Data ; 10(1): 583, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673954

RESUMEN

The Periconia fungal genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia are found in many habitats, but little is known about their ecology. Several species from this genus produce bioactive molecules. Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. Furthermore, P. digitata was shown to inhibit the plant pathogenic oomycete Phytophthora parasitica. Because P. digitata has great potential as a biocontrol agent and high quality genomic resources are still lacking in the Periconiaceae family, we generated long-read genomic data for P. digitata. Using PacBio Hifi sequencing technology, we obtained a highly-contiguous genome assembled in 13 chromosomes and totaling ca. 39 Mb. In addition, we produced a reference transcriptome, based on 12 different culture conditions, and proteomic data to support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will contribute to our better understanding of the Eukaryotic tree of life and opens new possibilities in terms of biotechnological applications.


Asunto(s)
Ascomicetos , Genoma Fúngico , Oomicetos , Ascomicetos/genética , Genómica , Proteómica
4.
Hortic Res ; 10(6): uhad068, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287445

RESUMEN

Prior exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with stronger defence responses. ß-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance protecting various plants towards diverse stresses. In this study, by integrating BABA-induced changes in selected metabolites with transcriptome and proteome data, we generated a global map of the molecular processes operating in BABA-induced resistance (BABA-IR) in tomato. BABA significantly restricts the growth of the pathogens Oidium neolycopersici and Phytophthora parasitica but not Botrytis cinerea. A cluster analysis of the upregulated processes showed that BABA acts mainly as a stress factor in tomato. The main factor distinguishing BABA-IR from other stress conditions was the extensive induction of signaling and perception machinery playing a key role in effective resistance against pathogens. Interestingly, the signalling processes and immune response activated during BABA-IR in tomato differed from those in Arabidopsis with substantial enrichment of genes associated with jasmonic acid (JA) and ethylene (ET) signalling and no change in Asp levels. Our results revealed key differences between the effect of BABA on tomato and other model plants studied until now. Surprisingly, salicylic acid (SA) is not involved in BABA downstream signalization whereas ET and JA play a crucial role.

5.
PLoS Comput Biol ; 18(11): e1010686, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350852

RESUMEN

Horizontal gene transfer (HGT) is the transfer of genes between species outside the transmission from parent to offspring. Due to their impact on the genome and biology of various species, HGTs have gained broader attention, but high-throughput methods to robustly identify them are lacking. One rapid method to identify HGT candidates is to calculate the difference in similarity between the most similar gene in closely related species and the most similar gene in distantly related species. Although metrics on similarity associated with taxonomic information can rapidly detect putative HGTs, these methods are hampered by false positives that are difficult to track. Furthermore, they do not inform on the evolutionary trajectory and events such as duplications. Hence, phylogenetic analysis is necessary to confirm HGT candidates and provide a more comprehensive view of their origin and evolutionary history. However, phylogenetic reconstruction requires several time-consuming manual steps to retrieve the homologous sequences, produce a multiple alignment, construct the phylogeny and analyze the topology to assess whether it supports the HGT hypothesis. Here, we present AvP which automatically performs all these steps and detects candidate HGTs within a phylogenetic framework.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal , Transferencia de Gen Horizontal/genética , Filogenia , Genoma , Programas Informáticos , Evolución Molecular
6.
Sci Data ; 9(1): 311, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710557

RESUMEN

During the last decades, metagenomics has highlighted the diversity of microorganisms from environmental or host-associated samples. Most metagenomics public repositories use annotation pipelines tailored for prokaryotes regardless of the taxonomic origin of contigs. Consequently, eukaryotic contigs with intrinsically different gene features, are not optimally annotated. Using a bioinformatics pipeline, we have filtered 7.9 billion contigs from 6,872 soil metagenomes in the JGI's IMG/M database to identify eukaryotic contigs. We have re-annotated genes using eukaryote-tailored methods, yielding 8 million eukaryotic proteins and over 300,000 orphan proteins lacking homology in public databases. Comparing the gene predictions we made with initial JGI ones on the same contigs, we confirmed our pipeline improves eukaryotic proteins completeness and contiguity in soil metagenomes. The improved quality of eukaryotic proteins combined with a more comprehensive assignment method yielded more reliable taxonomic annotation. This dataset of eukaryotic soil proteins with improved completeness, quality and taxonomic annotation reliability is of interest for any scientist aiming at studying the composition, biological functions and gene flux in soil communities involving eukaryotes.


Asunto(s)
Eucariontes , Metagenoma , Microbiología del Suelo , Eucariontes/genética , Eucariontes/metabolismo , Metagenómica
7.
Genes (Basel) ; 11(11)2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202889

RESUMEN

Plant-parasitic nematodes cause extensive annual yield losses to worldwide agricultural production. Most cultivated plants have no known resistance against nematodes and the few bearing a resistance gene can be overcome by certain species. Chemical methods that have been deployed to control nematodes have largely been banned from use due to their poor specificity and high toxicity. Hence, there is an urgent need for the development of cleaner and more specific control methods. Recent advances in nematode genomics, including in phytoparasitic species, provide an unprecedented opportunity to identify genes and functions specific to these pests. Using phylogenomics, we compared 61 nematode genomes, including 16 for plant-parasitic species and identified more than 24,000 protein families specific to these parasites. In the genome of Meloidogyne incognita, one of the most devastating plant parasites, we found ca. 10,000 proteins with orthologs restricted only to phytoparasitic species and no further homology in protein databases. Among these phytoparasite-specific proteins, ca. 1000 shared the same properties as known secreted effectors involved in essential parasitic functions. Of these, 68 were novel and showed strong expression during the endophytic phase of the nematode life cycle, based on both RNA-seq and RT-qPCR analyses. Besides effector candidates, transcription-related and neuro-perception functions were enriched in phytoparasite-specific proteins, revealing interesting targets for nematode control methods. This phylogenomics analysis constitutes a unique resource for the further understanding of the genetic basis of nematode adaptation to phytoparasitism and for the development of more efficient control methods.


Asunto(s)
Proteínas del Helminto/genética , Plantas/parasitología , Tylenchoidea/genética , Animales , Simulación por Computador , Regulación de la Expresión Génica , Ontología de Genes , Transferencia de Gen Horizontal , Genoma de los Helmintos/genética , Genómica/métodos , Interacciones Huésped-Parásitos/genética , Nematodos/genética , Nematodos/patogenicidad , Filogenia , Enfermedades de las Plantas/parasitología , Tylenchoidea/patogenicidad
8.
Microorganisms ; 8(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645882

RESUMEN

Most pathogenic oomycetes of the genus Phytophthora spread in water films as flagellated zoospores. Zoospores perceive and produce signals attracting other zoospores, resulting in autoaggregation in vitro or biofilm formation on plant surface. The mechanisms underlying intercellular communication and consequent attraction, adhesion and aggregation are largely unknown. In Phytophthora parasitica, the perception of a K+ gradient induces coordinated motion and aggregation. To define cellular and molecular events associated with oomycete aggregation, we combined transcriptomic and ultrastructural analyses. Results indicate involvement of electroception in K+ sensing. They establish that the transcriptome repertoire required for swimming and aggregation is already fully functional at zoospore release. At the time points analyzed, aggregates are mainly constituted of zoospores. They produce vesicular and fibrillary material discharged at cell-to-cell contacts. Consistently, the signature of transcriptome dynamics during transition to aggregates is an upregulation of genes potentially related to vesicular trafficking. Moreover, transcriptomic and functional analyses show a strong enhancement of carbonic anhydrase activity, indicating that pH homeostasis may contribute to aggregation by acting on both zoospore movement and adhesion. This study poses the molecular and cellular bases of aggregative behavior within oomycetes and expands the current knowledge of ion perception-mediated dissemination of propagules in the rhizosphere.

9.
Front Genet ; 11: 557, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582290

RESUMEN

Satellite DNA is a class of repetitive sequences that are organized in long arrays of tandemly repeated units in most eukaryotes. Long considered as selfish DNA, satellite sequences are now proposed to contribute to genome integrity. Despite their potential impact on the architecture and evolution of the genome, satellite DNAs have not been investigated in oomycetes due to the paucity of genomic data and the difficulty of assembling highly conserved satellite arrays. Yet gaining knowledge on the structure and evolution of genomes of oomycete pathogens is crucial to understanding the mechanisms underlying adaptation to their environment and to proposing efficient disease control strategies. A de novo assembly of the genome of Phytophthora parasitica, an important oomycete plant pathogen, led to the identification of several families of tandemly repeated sequences varying in size, copy number, and sequence conservation. Among them, two abundant families, designated as PpSat1 and PpSat2, displayed typical features of satellite DNA and were collectively designated as PpSat. These two satellite families differ by their length, sequence, organization, genomic environment, and evolutionary dynamics. PpSat1, but not PpSat2, presented homologs among oomycetes. This observation, as well as the characterization of transcripts of PpSat families, suggested that these satellite DNA families likely play a conserved role within this important group of pathogens.

10.
iScience ; 21: 587-602, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31759330

RESUMEN

Most animal species reproduce sexually and fully parthenogenetic lineages are usually short lived in evolution. Still, parthenogenesis may be advantageous as it avoids the cost of sex and permits colonization by single individuals. Panagrolaimid nematodes have colonized environments ranging from arid deserts to Arctic and Antarctic biomes. Many are obligatory meiotic parthenogens, and most have cryptobiotic abilities, being able to survive repeated cycles of complete desiccation and freezing. To identify systems that may contribute to these striking abilities, we sequenced and compared the genomes and transcriptomes of parthenogenetic and outcrossing panagrolaimid species, including cryptobionts and non-cryptobionts. The parthenogens are triploids, most likely originating through hybridization. Adaptation to cryptobiosis shaped the genomes of panagrolaimid nematodes and is associated with the expansion of gene families and signatures of selection on genes involved in cryptobiosis. All panagrolaimids have acquired genes through horizontal gene transfer, some of which are likely to contribute to cryptobiosis.

11.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277202

RESUMEN

Xiphinema index is an important plant parasitic nematode that induces direct damages and specifically transmits the Grapevine fanleaf virus, which is particularly harmful for grapevines. Genomic resources of this nematode species are still limited and no functional gene validation technology is available. RNA interference (RNAi) is a powerful technology to study gene function and here we describe the application of RNAi on several genes in X. index. Soaking the nematodes for 48 h in a suspension containing specific small interfering RNAs resulted in a partial inhibition of the accumulation of some targeted mRNA. However, low reproducible silencing efficiency was observed which could arise from X. index silencing pathway deficiencies. Indeed, essential accustomed proteins for these pathways were not found in the X. index proteome predicted from transcriptomic data. The most reproducible silencing effect was obtained when targeting the piccolo gene potentially involved in endo-exocytosis of synaptic molecules. This represents the first report of gene silencing in a nematode belonging to the Longidoridae family.


Asunto(s)
Regulación de la Expresión Génica , Nematodos/genética , ARN Interferente Pequeño/metabolismo , Animales , Nematodos/metabolismo , Enfermedades de las Plantas , Interferencia de ARN , Vitis/parasitología
12.
Mol Cell Probes ; 46: 101418, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283967

RESUMEN

SATQPCR is a web tool providing statistical analysis of real-time quantitative PCR data including all MIQE rules (gene efficiency, selection of reference genes and normalization with them). Our application is a quick tool that provides to the biologist, graphs as well as statistical tables summarizing their results with the chosen methods (t-test or ANOVA with Tukey test). The application is available at http://satqpcr.sophia.inra.fr with a demo dataset. Source code can be found at https://framagit.org/. SUPPLEMENTARY INFORMATION: Tutorials at http://satqpcr.sophia.inra.fr/cgi/help.cgi.


Asunto(s)
Internet , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Programas Informáticos/estadística & datos numéricos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
13.
BMC Genomics ; 19(1): 321, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724186

RESUMEN

BACKGROUND: The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. RESULTS: Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. CONCLUSIONS: Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment.


Asunto(s)
Epigénesis Genética , Genoma , Plantas/parasitología , Reproducción Asexuada/genética , Tylenchoidea/genética , Animales , Proteínas Argonautas/clasificación , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , ADN (Citosina-5-)-Metiltransferasas/clasificación , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Filogenia , Raíces de Plantas/parasitología , Procesamiento Proteico-Postraduccional/genética , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , ARN Pequeño no Traducido/genética
14.
Genes (Basel) ; 8(10)2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065523

RESUMEN

Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

15.
Genes (Basel) ; 8(10)2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28961181

RESUMEN

Horizontal gene transfer (HGT) is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI) protein library. The user defines recipient (e.g., Metazoa) and donor (e.g., bacteria, fungi) branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI) for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.

16.
PLoS Genet ; 13(6): e1006777, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28594822

RESUMEN

Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.


Asunto(s)
Variación Genética , Genoma de los Helmintos , Hibridación Genética , Poliploidía , Reproducción Asexuada , Tylenchoidea/genética , Animales , Elementos Transponibles de ADN , Genoma Mitocondrial , Polimorfismo Genético , Selección Genética
17.
Microbiome ; 5(1): 56, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28511691

RESUMEN

BACKGROUND: Interactions between pathogenic oomycetes and microbiota residing on the surface of the host plant root are unknown, despite being critical to inoculum constitution. The nature of these interactions was explored for the polyphagous and telluric species Phytophthora parasitica. RESULTS: Composition of the rhizospheric microbiota of Solanum lycopersicum was characterized using deep re-sequencing of 16S rRNA gene to analyze tomato roots either free of or partly covered with P. parasitica biofilm. Colonization of the host root surface by the oomycete was associated with a shift in microbial community involving a Bacteroidetes/Proteobacteria transition and Flavobacteriaceae as the most abundant family. Identification of members of the P. parasitica-associated microbiota interfering with biology and oomycete infection was carried out by screening for bacteria able to (i) grow on a P. parasitica extract-based medium (ii), exhibit in vitro probiotic or antibiotic activity towards the oomycete (iii), have an impact on the oomycete infection cycle in a tripartite interaction S. lycopersicum-P. parasitica-bacteria. One Pseudomonas phylotype was found to exacerbate disease symptoms in tomato plants. The lack of significant gene expression response of P. parasitica effectors to Pseudomonas suggested that the increase in plant susceptibility was not associated with an increase in virulence. Our results reveal that Pseudomonas spp. establishes commensal interactions with the oomycete. Bacteria preferentially colonize the surface of the biofilm rather than the roots, so that they can infect plant cells without any apparent infection of P. parasitica. CONCLUSIONS: The presence of the pathogenic oomycete P. parasitica in the tomato rhizosphere leads to a shift in the rhizospheric microbiota composition. It contributes to the habitat extension of Pseudomonas species mediated through a physical association between the oomycete and the bacteria.


Asunto(s)
Bacterias/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Phytophthora/patogenicidad , Análisis de Secuencia de ADN/métodos , Solanum lycopersicum/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Regulación de la Expresión Génica de las Plantas , Microbiota , Filogenia , Enfermedades de las Plantas , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Simbiosis
18.
Front Plant Sci ; 7: 794, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375649

RESUMEN

Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants.

19.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27286965

RESUMEN

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Asunto(s)
Genoma de Protozoos , Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Tylenchoidea/genética , Tylenchoidea/patogenicidad , Animales , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Islas Genómicas , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Estadios del Ciclo de Vida , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Sitios de Empalme de ARN , Empalme del ARN , Transcriptoma , Tylenchoidea/crecimiento & desarrollo , Virulencia/genética
20.
Genome Biol Evol ; 6(9): 2181-94, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25123114

RESUMEN

Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, "specific" have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes.


Asunto(s)
Evolución Biológica , Proteínas del Helminto/genética , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Transcriptoma , Tylenchoidea/genética , Animales , Femenino , Proteínas del Helminto/metabolismo , Especificidad del Huésped , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Nicotiana/parasitología , Tylenchoidea/clasificación , Tylenchoidea/crecimiento & desarrollo , Tylenchoidea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...