Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 293(31): 11984-11995, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29871930

RESUMEN

The unfolded protein response (UPR) is constitutively active in yeast thioredoxin reductase mutants, suggesting a link between cytoplasmic thiol redox control and endoplasmic reticulum (ER) oxidative protein folding. The unique oxidative environment of the ER lumen requires tight regulatory control, and we show that the active UPR depends on the presence of oxidized thioredoxins rather than arising because of a loss of thioredoxin function. Preventing activation of the UPR by deletion of HAC1, encoding the UPR transcription factor, rescues a number of thioredoxin reductase mutant phenotypes, including slow growth, shortened longevity, and oxidation of the cytoplasmic GSH pool. This is because the constitutive UPR in a thioredoxin reductase mutant results in the generation of hydrogen peroxide. The oxidation of thioredoxins in a thioredoxin reductase mutant requires aerobic metabolism and the presence of the Tsa1 and Tsa2 peroxiredoxins, indicating that a complete cytoplasmic thioredoxin system is crucial for maintaining ER redox homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Peróxido de Hidrógeno/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Aptitud Genética , Glutatión/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxidasas/genética , Peroxidasas/metabolismo , Pliegue de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Respuesta de Proteína Desplegada
2.
Mar Biotechnol (NY) ; 14(6): 774-81, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22527265

RESUMEN

Marine microalgae represent a potentially valuable feedstock for biofuel production; however, large-scale production is not yet economically viable. Optimisation of productivity and lipid yields is required and the cost of biomass harvesting and dewatering must be significantly reduced. Microalgae produce a wide variety of biologically active metabolites, many of which are involved in inter- and intra-specific interactions (the so-called infochemicals). The majority of infochemicals remain unidentified or uncharacterised. Here, we apply known and candidate (undefined extracts) infochemicals as a potential means to manipulate the growth and lipid content of Nannochloropsis oculata-a prospective species for biofuel production. Five known infochemicals (ß-cyclocitral, trans,trans-2,4-decadienal, hydrogen peroxide, norharman and tryptamine) and crude extracts prepared from Skeletonema marinoi and Dunaliella salina cultures at different growth stages were assayed for impacts on N. oculata over 24 h. The neutral lipid content of N. oculata increased significantly with exposure to three infochemicals (ß-cyclocitral, decadienal and norharman); however the effective concentrations affected a significant decrease in growth. Exposure to particular crude extracts significantly increased both growth and neutral lipid levels. In addition, water-soluble extracts of senescent S. marinoi cultures induced a degree of flocculation in the N. oculata. These preliminary results indicate that artificial manipulation of N. oculata cultures by application of algae infochemicals could provide a valuable tool towards achieving economically viable large-scale algae biofuel production.


Asunto(s)
Biocombustibles/microbiología , Extractos Celulares/farmacología , Sistema Libre de Células/química , Metabolismo de los Lípidos/fisiología , Estramenopilos/fisiología , Proliferación Celular , Metabolismo de los Lípidos/efectos de los fármacos , Estramenopilos/efectos de los fármacos
3.
Mol Cell ; 45(3): 398-408, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22245228

RESUMEN

Eukaryotic 2-Cys peroxiredoxins (Prx) are abundant antioxidant enzymes whose thioredoxin peroxidase activity plays an important role in protecting against oxidative stress, aging, and cancer. Paradoxically, this thioredoxin peroxidase activity is highly sensitive to inactivation by peroxide-induced Prx hyperoxidation. However, any possible advantage in preventing Prx from removing peroxides under oxidative stress conditions has remained obscure. Here we demonstrate that, in cells treated with hydrogen peroxide, the Prx Tpx1 is a major substrate for thioredoxin in the fission yeast Schizosaccharomyces pombe and, as such, competitively inhibits thioredoxin-mediated reduction of other oxidized proteins. Consequently, we reveal that the hyperoxidation of Tpx1 is critical to allow thioredoxin to act on other substrates ensuring repair of oxidized proteins and cell survival following exposure to toxic levels of hydrogen peroxide. We conclude that the inactivation of the thioredoxin peroxidase activity of Prx is important to maintain thioredoxin activity and cell viability under oxidative stress conditions.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Peroxirredoxinas/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Tiorredoxinas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Disulfuros/metabolismo , Técnicas de Inactivación de Genes , Peróxido de Hidrógeno/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , Viabilidad Microbiana , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxinas/genética
4.
Biochem J ; 412(1): 73-80, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18271751

RESUMEN

The yeast Tsa1 peroxiredoxin, like other 2-Cys peroxiredoxins, has dual activities as a peroxidase and as a molecular chaperone. Its peroxidase function predominates in lower-molecular-mass forms, whereas a super-chaperone form predominates in high-molecular-mass complexes. Loss of TSA1 results in aggregation of ribosomal proteins, indicating that Tsa1 functions to maintain the integrity of the translation apparatus. In the present study we report that Tsa1 functions as an antioxidant on actively translating ribosomes. Its peroxidase activity is required for ribosomal function, since mutation of the peroxidatic cysteine residue, which inactivates peroxidase but not chaperone activity, results in sensitivity to translation inhibitors. The peroxidatic cysteine residue is also required for a shift from ribosomes to its high-molecular-mass form in response to peroxide stress. Thus Tsa1 appears to function predominantly as an antioxidant in protecting both the cytosol and actively translating ribosomes against endogenous ROS (reactive oxygen species), but shifts towards its chaperone function in response to oxidative stress conditions. Analysis of the distribution of Tsa1 in thioredoxin system mutants revealed that the ribosome-associated form of Tsa1 is increased in mutants lacking thioredoxin reductase (trr1) and thioredoxins (trx1 trx2) in parallel with the general increase in total Tsa1 levels which is observed in these mutants. In the present study we show that deregulation of Tsa1 in the trr1 mutant specifically promotes translation defects including hypersensitivity to translation inhibitors, increased translational error-rates and ribosomal protein aggregation. These results have important implications for the role of peroxiredoxins in stress and growth control, since peroxiredoxins are likely to be deregulated in a similar manner during many different disease states.


Asunto(s)
Antioxidantes/fisiología , Peroxidasas/metabolismo , Peroxidasas/fisiología , Peroxirredoxinas/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Antioxidantes/metabolismo , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Organismos Modificados Genéticamente , Oxidación-Reducción , Estrés Oxidativo/genética , Peroxidasa/metabolismo , Peroxidasas/genética , Unión Proteica , Biosíntesis de Proteínas/fisiología , Ribosomas/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxina Reductasa 1/genética , Tiorredoxinas/genética
5.
Mol Biol Cell ; 17(1): 387-401, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16251355

RESUMEN

We previously showed that thioredoxins are required for dithiothreitol (DTT) tolerance, suggesting they maintain redox homeostasis in response to both oxidative and reductive stress conditions. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to DTT to identify cell functions involved in resistance to reductive stress. We identified 195 mutants, whose gene products are localized throughout the cell. DTT-sensitive mutants were distributed among most major biological processes, but they particularly affected gene expression, metabolism, and the secretory pathway. Strikingly, a mutant lacking TSA1, encoding a peroxiredoxin, showed a similar sensitivity to DTT as a thioredoxin mutant. Epistasis analysis indicated that thioredoxins function upstream of Tsa1 in providing tolerance to DTT. Our data show that the chaperone function of Tsa1, rather than its peroxidase function, is required for this activity. Cells lacking TSA1 were found to accumulate aggregated proteins, and this was exacerbated by exposure to DTT. Analysis of the protein aggregates revealed that they are predominantly composed of ribosomal proteins. Furthermore, aggregation was found to correlate with an inhibition of translation initiation. We propose that Tsa1 normally functions to chaperone misassembled ribosomal proteins, preventing the toxicity that arises from their aggregation.


Asunto(s)
Peroxidasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ditiotreitol/farmacología , Farmacorresistencia Fúngica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Peroxidasas/genética , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxinas/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
FEMS Microbiol Lett ; 207(1): 91-5, 2002 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11886757

RESUMEN

Intrinsic antimicrobial resistance of Escherichia coli is elicited by the gene products of the multidrug efflux acrAB-tolC operon. In this paper, we have shown that acrAB is regulated as a function of the growth rate of E. coli during growth in batch and chemostat culture. In chemostat culture, expression of acrAB is inversely related to growth rate irrespective of the limiting nutrient. The level of expression of acrAB is greater under glucose limitation compared with either iron or nitrogen limitation. Increase in expression of acrAB confers a greater resistance to ciprofloxacin, and the implications for a clinical situation are discussed. Slow growth rate regulation of acrAB transcription does not require the presence of the stationary-phase sigma factor. A putative gearbox consensus sequence was identified at the -10 region of the acrAB promoter.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras , Proteínas de Escherichia coli , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Transcripción Genética , Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Ciprofloxacina/farmacología , Medios de Cultivo , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Lipoproteínas/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Factor sigma/genética , Factor sigma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...