Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Life (Basel) ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35330126

RESUMEN

Nutrition underpins survival and reproduction in animal populations; reliable nutritional biomarkers are therefore requisites to understanding environmental drivers of population dynamics. Biomarkers vary in scope of inference and sensitivity, making it important to know what and when to measure to properly quantify biological responses. We evaluated the repeatability of three nutritional biomarkers in a large, iteroparous mammal to evaluate the level of intrinsic and extrinsic contributions to those traits. During a long-term, individual-based study in a highly variable environment, we measured body fat, body mass, and lean mass of mule deer (Odocoileus hemionus) each autumn and spring. Lean mass was the most repeatable biomarker (0.72 autumn; 0.61 spring), followed by body mass (0.64 autumn; 0.53 spring), and then body fat (0.22 autumn; 0.01 spring). High repeatability in body and lean mass likely reflects primary structural composition, which is conserved across seasons. Low repeatability of body fat supports that it is the primary labile source of energy that is largely a product of environmental contributions of the previous season. Based on the disparate levels in repeatability among nutritional biomarkers, we contend that body and lean mass are better indicators of nutritional legacies (e.g., maternal effects), whereas body fat is a direct and sensitive reflection of recent nutritional gains and losses.

2.
Ecol Appl ; 29(7): e01972, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301178

RESUMEN

The availability and quality of forage on the landscape constitute the foodscape within which animals make behavioral decisions to acquire food. Novel changes to the foodscape, such as human disturbance, can alter behavioral decisions that favor avoidance of perceived risk over food acquisition. Although behavioral changes and population declines often coincide with the introduction of human disturbance, the link(s) between behavior and population trajectory are difficult to elucidate. To identify a pathway by which human disturbance may affect ungulate populations, we tested the Behaviorally Mediated Forage-Loss Hypothesis, wherein behavioral avoidance is predicted to reduce use of available forage adjacent to disturbance. We used GPS collar data collected from migratory mule deer (Odocoileus hemionus) to evaluate habitat selection, movement patterns, and time-budgeting behavior in response to varying levels of forage availability and human disturbance in three different populations exposed to a gradient of energy development. Subsequently, we linked animal behavior with measured use of forage relative to human disturbance, forage availability, and quality. Mule deer avoided human disturbance at both home range and winter range scales, but showed negligible differences in vigilance rates at the site level. Use of the primary winter forage, sagebrush (Artemisia tridentata), increased as production of new annual growth increased but use decreased with proximity to disturbance. Consequently, avoidance of human disturbance prompted loss of otherwise available forage, resulting in indirect habitat loss that was 4.6-times greater than direct habitat loss from roads, well pads, and other infrastructure. The multiplicative effects of indirect habitat loss, as mediated by behavior, impaired use of the foodscape by reducing the amount of available forage for mule deer, a consequence of which may be winter ranges that support fewer animals than they did before development.


Asunto(s)
Ciervos , Animales , Ecosistema , Fenómenos de Retorno al Lugar Habitual , Humanos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...