Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(6): 2151-2160, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38712889

RESUMEN

Antimicrobial peptides (AMPs) are presented as potential scaffolds for antibiotic development due to their desirable qualities including broad-spectrum activity, rapid action, and general lack of susceptibility to current resistance mechanisms. However, they often lose antibacterial activity under physiological conditions and/or display mammalian cell toxicity, which limits their potential use. Identification of AMPs that overcome these barriers will help develop rules for how this antibacterial class can be developed to treat infection. Here we describe the development of our novel synthetic AMP, from discovery through in vivo application. Our evolved AMP, DTr18-dab, has broad-spectrum antibacterial activity and is nonhemolytic. It is active against planktonic bacteria and biofilm, is unaffected by colistin resistance, and importantly is active in both human serum and a Galleria mellonella infection model. Several modifications, including the incorporation of noncanonical amino acids, were used to arrive at this robust sequence. We observed that the impact on antibacterial activity with noncanonical amino acids was dependent on assay conditions and therefore not entirely predictable. Overall, our results demonstrate how a relatively weak lead can be developed into a robust AMP with qualities important for potential therapeutic translation.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Biopelículas/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Colistina/farmacología , Colistina/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química
2.
Res Sq ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790501

RESUMEN

Antimicrobial peptides commonly act by disrupting bacterial membranes, but also frequently damage mammalian membranes. Deciphering the rules governing membrane selectivity is critical to understanding their function and enabling their therapeutic use. Past attempts to decipher these rules have failed because they cannot interrogate adequate peptide sequence variation. To overcome this problem, we develop deep mutational surface localized antimicrobial display (dmSLAY), which reveals comprehensive positional residue importance and flexibility across an antimicrobial peptide sequence. We apply dmSLAY to Protegrin-1, a potent yet toxic antimicrobial peptide, and identify thousands of sequence variants that positively or negatively influence its antibacterial activity. Further analysis reveals that avoiding large aromatic residues and eliminating disulfide bound cysteine pairs while maintaining membrane bound secondary structure greatly improves Protegrin-1 bacterial specificity. Moreover, dmSLAY datasets enable machine learning to expand our analysis to include over 5.7 million sequence variants and reveal full Protegrin-1 mutational profiles driving either bacterial or mammalian membrane specificity. Our results describe an innovative, high-throughput approach for elucidating antimicrobial peptide sequence-structure-function relationships which can inform synthetic peptide-based drug design.

3.
PNAS Nexus ; 2(8): pgad270, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37637199

RESUMEN

The lack of available treatments for many antimicrobial-resistant infections highlights the critical need for antibiotic discovery innovation. Peptides are an underappreciated antibiotic scaffold because they often suffer from proteolytic instability and toxicity toward human cells, making in vivo use challenging. To investigate sequence factors related to serum activity, we adapt an antibacterial display technology to screen a library of peptide macrocycles for antibacterial potential directly in human serum. We identify dozens of new macrocyclic peptide antibiotic sequences and find that serum activity within our library is influenced by peptide length, cationic charge, and the number of disulfide bonds present. Interestingly, an optimized version of our most active lead peptide permeates the outer membrane of Gram-negative bacteria without strong inner-membrane disruption and kills bacteria slowly while causing cell elongation. This contrasts with traditional cationic antimicrobial peptides, which kill rapidly via lysis of both bacterial membranes. Notably, this optimized variant is not toxic to mammalian cells and retains its function in vivo, suggesting therapeutic promise. Our results support the use of more physiologically relevant conditions when screening peptides for antimicrobial activity which retain in vivo functionality.

4.
bioRxiv ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37546850

RESUMEN

The lack of available treatments for many antimicrobial resistant infections highlights the critical need for antibiotic discovery innovation. Peptides are an underappreciated antibiotic scaffold because they often suffer from proteolytic instability and toxicity towards human cells, making in vivo use challenging. To investigate sequence factors related to serum activity, we adapt an antibacterial display technology to screen a library of peptide macrocycles for antibacterial potential directly in human serum. We identify dozens of new macrocyclic peptide antibiotic sequences and find that serum activity within our library is influenced by peptide length, cationic charge, and the number of disulfide bonds present. Interestingly, an optimized version of our most active lead peptide permeates the outer membrane of gram-negative bacteria without strong inner membrane disruption and kills bacteria slowly while causing cell elongation. This contrasts with traditional cationic antimicrobial peptides, which kill rapidly via lysis of both bacterial membranes. Notably, this optimized variant is not toxic to mammalian cells and retains its function in vivo , suggesting therapeutic promise. Our results support the use of more physiologically relevant conditions when screening peptides for antimicrobial activity which retain in vivo functionality. Significance: Traditional methods of natural antibiotic discovery are low throughput and cannot keep pace with the development of antimicrobial resistance. Synthetic peptide display technologies offer a high-throughput means of screening drug candidates, but rarely consider functionality beyond simple target binding and do not consider retention of function in vivo . Here, we adapt a function-based, antibacterial display technology to screen a large library of peptide macrocycles directly for bacterial growth inhibition in human serum. This screen identifies an optimized non-toxic macrocyclic peptide antibiotic retaining in vivo function, suggesting this advancement could increase clinical antibiotic discovery efficiency.

5.
bioRxiv ; 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37547010

RESUMEN

Antimicrobial peptides commonly act by disrupting bacterial membranes, but also frequently damage mammalian membranes. Deciphering the rules governing membrane selectivity is critical to understanding their function and enabling their therapeutic use. Past attempts to decipher these rules have failed because they cannot interrogate adequate peptide sequence variation. To overcome this problem, we develop deep mutational surface localized antimicrobial display (dmSLAY), which reveals comprehensive positional residue importance and flexibility across an antimicrobial peptide sequence. We apply dmSLAY to Protegrin-1, a potent yet toxic antimicrobial peptide, and identify thousands of sequence variants that positively or negatively influence its antibacterial activity. Further analysis reveals that avoiding large aromatic residues and eliminating disulfide bound cysteine pairs while maintaining membrane bound secondary structure greatly improves Protegrin-1 bacterial specificity. Moreover, dmSLAY datasets enable machine learning to expand our analysis to include over 5.7 million sequence variants and reveal full Protegrin-1 mutational profiles driving either bacterial or mammalian membrane specificity. Our results describe an innovative, high-throughput approach for elucidating antimicrobial peptide sequence-structure-function relationships which can inform synthetic peptide-based drug design.

6.
Sci Adv ; 9(30): eadi5945, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37494439

RESUMEN

RNA:DNA hybrids compromise replication fork progression and genome integrity in all cells. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate strongly in noncoding RNAs and 5'-UTRs of coding sequences. For ΔrnhB, hybrids accumulate preferentially in untranslated regions and early in coding sequences. We show that hybrid accumulation is particularly sensitive to gene expression in ΔrnhC cells. DNA replication in ΔrnhC cells is disrupted, leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts cause mutagenesis and shape genome organization.


Asunto(s)
Proteínas Bacterianas , ARN , ARN/genética , Proteínas Bacterianas/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Mutagénesis , ADN/genética , ADN/metabolismo , Replicación del ADN/genética , Ribonucleasa H/genética , Ribonucleasa H/química , Ribonucleasa H/metabolismo
7.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214986

RESUMEN

RNA:DNA hybrids such as R-loops affect genome integrity and DNA replication fork progression. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome-wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation, but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate most strongly in non-coding RNAs and 5'-UTRs of coding sequences. For Δ rnhB , hybrids accumulate preferentially in untranslated regions and early in coding sequences. Hybrid accumulation is particularly sensitive to gene expression in Δ rnhC ; in cells lacking RnhC, DNA replication is disrupted leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts interact with replication to cause mutagenesis and shape genome organization.

8.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119473, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37011732

RESUMEN

Antibiotic resistant bacterial infections are now a leading cause of global mortality. While drug resistance continues to spread, the clinical antibiotic pipeline has become bare. This discord has focused attention on developing new strategies for antimicrobial discovery. Natural macrocyclic peptide-based products have provided novel antibiotics and antibiotic scaffolds targeting several essential bacterial cell envelope processes, but discovery of such natural products remains a slow and inefficient process. Synthetic strategies employing peptide display technologies can quickly screen large libraries of macrocyclic sequences for specific target binding and general antibacterial potential providing alternative approaches for new antibiotic discovery. Here we review cell envelope processes that can be targeted with macrocyclic peptide therapeutics, outline important macrocyclic peptide display technologies, and discuss future strategies for both library design and screening.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Péptidos/farmacología , Péptidos/metabolismo , Bacterias/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
9.
Sci Adv ; 9(2): eade0008, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36630516

RESUMEN

Peptide macrocycles are a rapidly emerging class of therapeutic, yet the design of their structure and activity remains challenging. This is especially true for those with ß-hairpin structure due to weak folding properties and a propensity for aggregation. Here, we use proteomic analysis and common antimicrobial features to design a large peptide library with macrocyclic ß-hairpin structure. Using an activity-driven high-throughput screen, we identify dozens of peptides killing bacteria through selective membrane disruption and analyze their biochemical features via machine learning. Active peptides contain a unique constrained structure and are highly enriched for cationic charge with arginine in their turn region. Our results provide a synthetic strategy for structured macrocyclic peptide design and discovery while also elucidating characteristics important for ß-hairpin antimicrobial peptide activity.


Asunto(s)
Antibacterianos , Proteómica , Antibacterianos/farmacología , Antibacterianos/química , Péptidos/farmacología , Péptidos/química , Bacterias
10.
iScience ; 25(1): 103611, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35005555

RESUMEN

The rapid development and spread of antibiotic resistance necessitate the development of novel strategies for antibiotic discovery. Symbah-1, a synthetic peptide antibiotic, was identified in a high-throughput antibacterial screen of random peptide sequences. Symbah-1 functions through membrane disruption and contains broad spectrum bactericidal activity against several drug-resistant pathogens. Circular dichroism and high-resolution mass spectrometry indicate symbah-1 has a ß-hairpin structure induced by lipopolysaccharide and is cyclized via an intramolecular disulfide bond. Together these data classify symbah-1 as an uncommon synthetic member of the ß-hairpin antimicrobial peptide class. Symbah-1 displays low hemolysis but loses activity in human serum. Characterization of a symbah-1 peptide library identified two variants with increased serum activity and protease resistance. The method of discovery and subsequent characterization of symbah-1 suggests large synthetic peptide libraries bias toward macrocyclic ß-hairpin structure could be designed and screened to rapidly expand and better understand this rare peptide antibiotic class.

11.
Methods Mol Biol ; 2371: 287-298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34596854

RESUMEN

Peptide macrocycles exhibit great ability to inhibit bacterial growth making them a promising new avenue for antimicrobial discovery. Surface Localized Antimicrobial Display (SLAY) is a platform allowing the high-throughput screening of large peptide libraries of diverse length, composition, or structure for their antimicrobial activity, including macrocyclic peptides cyclized through disulfide bonding. Here we describe the procedure for the design and construction of a SLAY peptide library and the process for screening that library for antimicrobial potential.


Asunto(s)
Péptidos Antimicrobianos/análisis , Ensayos Analíticos de Alto Rendimiento , Biblioteca de Péptidos , Péptidos
13.
Nucleic Acids Res ; 48(10): 5332-5348, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32324221

RESUMEN

The genomes of organisms from all three domains of life harbor endogenous base modifications in the form of DNA methylation. In bacterial genomes, methylation occurs on adenosine and cytidine residues to include N6-methyladenine (m6A), 5-methylcytosine (m5C), and N4-methylcytosine (m4C). Bacterial DNA methylation has been well characterized in the context of restriction-modification (RM) systems, where methylation regulates DNA incision by the cognate restriction endonuclease. Relative to RM systems less is known about how m6A contributes to the epigenetic regulation of cellular functions in Gram-positive bacteria. Here, we characterize site-specific m6A modifications in the non-palindromic sequence GACGmAG within the genomes of Bacillus subtilis strains. We demonstrate that the yeeA gene is a methyltransferase responsible for the presence of m6A modifications. We show that methylation from YeeA does not function to limit DNA uptake during natural transformation. Instead, we identify a subset of promoters that contain the methylation consensus sequence and show that loss of methylation within promoter regions causes a decrease in reporter expression. Further, we identify a transcriptional repressor that preferentially binds an unmethylated promoter used in the reporter assays. With these results we suggest that m6A modifications in B. subtilis function to promote gene expression.


Asunto(s)
Adenosina/análogos & derivados , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Adenosina/análisis , Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos , Metilación de ADN , Enzimas de Restricción-Modificación del ADN , Epigénesis Genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/fisiología , Factores de Transcripción/metabolismo
14.
Nucleic Acids Res ; 47(9): 4831-4842, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916336

RESUMEN

The ß-clamp is a protein hub central to DNA replication and fork management. Proteins interacting with the ß-clamp harbor a conserved clamp-binding motif that is often found in extended regions. Therefore, clamp interactions have -almost exclusively- been studied using short peptides recapitulating the binding motif. This approach has revealed the molecular determinants that mediate the binding but cannot describe how proteins with clamp-binding motifs embedded in structured domains are recognized. The mismatch repair protein MutL has an internal clamp-binding motif, but its interaction with the ß-clamp has different roles depending on the organism. In Bacillus subtilis, the interaction stimulates the endonuclease activity of MutL and it is critical for DNA mismatch repair. Conversely, disrupting the interaction between Escherichia coli MutL and the ß-clamp only causes a mild mutator phenotype. Here, we determined the structures of the regulatory domains of E. coli and B. subtilis MutL bound to their respective ß-clamps. The structures reveal different binding modes consistent with the binding to the ß-clamp being a two-step process. Functional characterization indicates that, within the regulatory domain, only the clamp binding motif is required for the interaction between the two proteins. However, additional motifs beyond the regulatory domain may stabilize the interaction. We propose a model for the activation of the endonuclease activity of MutL in organisms lacking methyl-directed mismatch repair.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , Proteínas de Escherichia coli/genética , Proteínas MutL/genética , Adenosina Trifosfatasas , Bacillus subtilis/química , Bacillus subtilis/genética , Sitios de Unión/genética , Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa III/química , Escherichia coli/genética , Modelos Moleculares , Proteínas MutL/química , Unión Proteica , Especificidad de la Especie
15.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30670546

RESUMEN

RNA-DNA hybrids are common in chromosomal DNA. Persistent RNA-DNA hybrids result in replication fork stress, DNA breaks, and neurological disorders in humans. During replication, Okazaki fragment synthesis relies on frequent RNA primer placement, providing one of the most prominent forms of covalent RNA-DNA strands in vivo The mechanism of Okazaki fragment maturation, which involves RNA removal and subsequent DNA replacement, in bacteria lacking RNase HI remains unclear. In this work, we reconstituted repair of a linear model Okazaki fragment in vitro using purified recombinant enzymes from Bacillus subtilis We showed that RNase HII and HIII are capable of incision on Okazaki fragments in vitro and that both enzymes show mild stimulation by single-stranded DNA binding protein (SSB). We also showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation in vitro Furthermore, we found that YpcP is a 5' to 3' nuclease that can act on a wide variety of RNA- and DNA-containing substrates and exhibits preference for degrading RNA in model Okazaki fragments. Together, our data showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation, whereas YpcP also contributes to the removal of RNA from an Okazaki fragment in vitroIMPORTANCE All cells are required to resolve the different types of RNA-DNA hybrids that form in vivo When RNA-DNA hybrids persist, cells experience an increase in mutation rate and problems with DNA replication. Okazaki fragment synthesis on the lagging strand requires an RNA primer to begin synthesis of each fragment. The mechanism of RNA removal from Okazaki fragments remains unknown in bacteria that lack RNase HI. We examined Okazaki fragment processing in vitro and found that RNase HIII in conjunction with DNA polymerase I represent the most efficient repair pathway. We also assessed the contribution of YpcP and found that YpcP is a 5' to 3' exonuclease that prefers RNA substrates with activity on Okazaki and flap substrates in vitro.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Ribonucleasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , ADN Polimerasa I/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Ribonucleasas/aislamiento & purificación
16.
J Bacteriol ; 200(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084857

RESUMEN

We tested the activities of four predicated RNase H enzymes, including two RNase HI-type enzymes, in addition to RNase HII (RnhB) and RNase HIII (RnhC), on several RNA-DNA hybrid substrates with different divalent metal cations. We found that the two RNase HI-type enzymes, YpdQ and YpeP, failed to show activity on the three substrates tested. RNase HII and RNase HIII cleaved all the substrates tested, although the activity was dependent on the metal made available. We show that Bacillus subtilis RNase HII and RNase HIII are both able to incise 5' to a single ribonucleoside monophosphate (rNMP). We show that RNase HIII incision at a single rNMP occurs most efficiently with Mn2+, an activity we found to be conserved among other Gram-positive RNase HIII enzymes. Characterization of RNases HII and HIII with metal concentrations in the physiological range showed that RNase HII can cleave at single rNMPs embedded in DNA while RNase HIII is far less effective. Further, using metal concentrations within the physiological range, RNase HIII efficiently cleaved longer RNA-DNA hybrids lacking an RNA-DNA junction, while RNase HII was much less effective. Phenotypic analysis showed that cells with an rnhC deletion were sensitive to hydroxyurea (HU). In contrast, cells with an rnhB deletion showed wild-type growth in the presence of HU, supporting the hypothesis that RNases HII and HIII have distinct substrate specificities in vivo This work demonstrates how metal availability influences the substrate recognition and activity of RNases HII and HIII, providing insight into their functions in vivoIMPORTANCE RNase H represents a class of proteins that cleave RNA-DNA hybrids, helping resolve R-loops and Okazaki fragments, as well as initiating the process of ribonucleotide excision repair (RER). We investigated the activities of four Bacillus subtilis RNase H enzymes and found that only RNases HII and HIII have activity and that their substrate preference is dependent on metal availability. To understand the factors that contribute to RNase HII and RNase HIII substrate preference, we show that in the presence of metal concentrations within the physiological range, RNases HII and HIII have distinct activities on different RNA-DNA hybrids. This work provides insight into how RNases HII and HIII repair the broad range of RNA-DNA hybrids that form in Gram-positive bacteria.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Metales/farmacología , Ribonucleasa H/metabolismo , Ribonucleasas/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Cationes Bivalentes/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Metales/metabolismo , Filogenia , Ribonucleasa H/genética , Ribonucleasas/genética , Especificidad por Sustrato
17.
Proc Natl Acad Sci U S A ; 114(44): 11733-11738, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078353

RESUMEN

Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context-dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.


Asunto(s)
Bacillus subtilis/genética , ADN Bacteriano/genética , Ribonucleótidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/fisiología , Modelos Biológicos , Mutagénesis , Mutación , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
18.
G3 (Bethesda) ; 7(3): 991-1000, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28122949

RESUMEN

Lysosomes, the major membrane-bound degradative organelles, have a multitude of functions in eukaryotic cells. Lysosomes are the terminal compartments in the endocytic pathway, though they display highly dynamic behaviors, fusing with each other and with late endosomes in the endocytic pathway, and with the plasma membrane during regulated exocytosis and for wound repair. After fusing with late endosomes, lysosomes are reformed from the resulting hybrid organelles through a process that involves budding of a nascent lysosome, extension of the nascent lysosome from the hybrid organelle, while remaining connected by a membrane bridge, and scission of the membrane bridge to release the newly formed lysosome. The newly formed lysosomes undergo cycles of homotypic fusion and fission reactions to form mature lysosomes. In this study, we used a forward genetic screen in Caenorhabditis elegans to identify six regulators of lysosome biology. We show that these proteins function in different steps of lysosome biology, regulating lysosome formation, lysosome fusion, and lysosome degradation.


Asunto(s)
Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Animales , Caenorhabditis elegans/genética , Compartimento Celular , Membrana Celular/metabolismo , Clonación Molecular , Endocitosis/genética , Genes de Helminto , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Homología de Secuencia de Ácido Nucleico
19.
Nucleic Acids Res ; 43(22): 10746-59, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26384423

RESUMEN

The sliding clamp enhances polymerase processivity and coordinates DNA replication with other critical DNA processing events including translesion synthesis, Okazaki fragment maturation and DNA repair. The relative binding affinity of the sliding clamp for its partners determines how these processes are orchestrated and is essential to ensure the correct processing of newly replicated DNA. However, while stable clamp interactions have been extensively studied; dynamic interactions mediated by the sliding clamp remain poorly understood. Here, we characterize the interaction between the bacterial sliding clamp (ß-clamp) and one of its weak-binding partners, the DNA mismatch repair protein MutL. Disruption of this interaction causes a mild mutator phenotype in Escherichia coli, but completely abrogates mismatch repair activity in Bacillus subtilis. We stabilize the MutL-ß interaction by engineering two cysteine residues at variable positions of the interface. Using disulfide bridge crosslinking, we have stabilized the E. coli and B. subtilis MutL-ß complexes and have characterized their structures using small angle X-ray scattering. We find that the MutL-ß interaction greatly stimulates the endonuclease activity of B. subtilis MutL and supports this activity even in the absence of the N-terminal region of the protein.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , ADN Polimerasa III/química , Endodesoxirribonucleasas/química , Proteínas de Escherichia coli/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cisteína/genética , ADN/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteínas MutL , Unión Proteica , Estructura Terciaria de Proteína
20.
Crit Rev Biochem Mol Biol ; 50(3): 181-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25387798

RESUMEN

In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN Bacteriano/química , Escherichia coli/metabolismo , Ribonucleótidos/metabolismo , Bacillus subtilis/metabolismo , ADN Polimerasa I/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA