Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(10): 114747, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39298318

RESUMEN

The formation, stabilization, and elimination of synapses are tightly regulated during neural development and into adulthood. Pumilio RNA-binding proteins regulate the translation and localization of many synaptic mRNAs and are developmentally downregulated in the brain. We found that simultaneous downregulation of Pumilio 1 and 2 increases both excitatory and inhibitory synapse density in primary hippocampal neurons and promotes synapse maturation. Loss of Pum1 and Pum2 in the mouse brain was associated with an increase in mRNAs involved in mitochondrial function and synaptic translation. These findings reveal a role for developmental Pumilio downregulation as a permissive step in the maturation of synapses and suggest that modulation of Pumilio levels is a cell-intrinsic mechanism by which neurons tune their capacity for synapse stabilization.

2.
Sci Adv ; 9(9): eadd2671, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867706

RESUMEN

Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that ß-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with ß-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing ß-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Dimerización , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Péptidos beta-Amiloides , Expresión Génica , Factor de Transcripción Activador 4 , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
3.
Neuron ; 105(5): 813-821.e6, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31899071

RESUMEN

Despite being an autosomal dominant disorder caused by a known coding mutation in the gene HTT, Huntington's disease (HD) patients with similar trinucleotide repeat mutations can have an age of onset that varies by decades. One likely contributing factor is the genetic heterogeneity of patients that might modify their vulnerability to disease. We report that although the heterozygous depletion of the autophagy adaptor protein Alfy/Wdfy3 has no consequence in control mice, it significantly accelerates age of onset and progression of HD pathogenesis. Alfy is required in the adult brain for the autophagy-dependent clearance of proteinaceous deposits, and its depletion in mice and neurons derived from patient fibroblasts accelerates the aberrant accumulation of this pathological hallmark shared across adult-onset neurodegenerative diseases. These findings indicate that selectively compromising the ability to eliminate aggregated proteins is a pathogenic driver, and the selective elimination of aggregates may confer disease resistance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Enfermedad de Huntington/genética , Macroautofagia/genética , Neuronas/metabolismo , Agregación Patológica de Proteínas/genética , Edad de Inicio , Animales , Muerte Celular/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Noqueados , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/fisiopatología
4.
Neuron ; 104(5): 931-946.e5, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31606248

RESUMEN

Localized protein synthesis is fundamental for neuronal development, maintenance, and function. Transcriptomes in axons and soma are distinct, but the mechanisms governing the composition of axonal transcriptomes and their developmental regulation are only partially understood. We found that the binding motif for the RNA-binding proteins Pumilio 1 and 2 (Pum1 and Pum2) is underrepresented in transcriptomes of developing axons. Introduction of Pumilio-binding elements (PBEs) into mRNAs containing a ß-actin zipcode prevented axonal localization and translation. Pum2 is restricted to the soma of developing neurons, and Pum2 knockdown or blocking its binding to mRNA caused the appearance and translation of PBE-containing mRNAs in axons. Pum2-deficient neurons exhibited axonal growth and branching defects in vivo and impaired axon regeneration in vitro. These results reveal that Pum2 shapes axonal transcriptomes by preventing the transport of PBE-containing mRNAs into axons, and they identify somatic mRNAs retention as a mechanism for the temporal control of intra-axonal protein synthesis.


Asunto(s)
Axones/metabolismo , Cuerpo Celular/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcriptoma/fisiología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Biosíntesis de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley
5.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29759981

RESUMEN

Neurons frequently encounter neurodegenerative signals first in their periphery. For example, exposure of axons to oligomeric Aß1-42 is sufficient to induce changes in the neuronal cell body that ultimately lead to degeneration. Currently, it is unclear how the information about the neurodegenerative insult is transmitted to the soma. Here, we find that the translation of pre-localized but normally silenced sentinel mRNAs in axons is induced within minutes of Aß1-42 addition in a Ca2+-dependent manner. This immediate protein synthesis following Aß1-42 exposure generates a retrograde signaling complex including vimentin. Inhibition of the immediate protein synthesis, knock-down of axonal vimentin synthesis, or inhibition of dynein-dependent transport to the soma prevented the normal cell body response to Aß1-42 These results establish that CNS axons react to neurodegenerative insults via the local translation of sentinel mRNAs encoding components of a retrograde signaling complex that transmit the information about the event to the neuronal soma.


Asunto(s)
Péptidos beta-Amiloides/genética , Degeneración Nerviosa/genética , Neuronas/metabolismo , Fragmentos de Péptidos/genética , ARN Mensajero/genética , Animales , Axones/metabolismo , Axones/patología , Sistema Nervioso Central/metabolismo , Dineínas/genética , Ratones , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Ratas , Transducción de Señal , Transcriptoma/genética , Vimentina/genética , Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA