Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 7(5): 661-671, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37127707

RESUMEN

The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.


Asunto(s)
Integrasas , Lentivirus , Humanos , Lentivirus/genética , Integrasas/genética , Integrasas/metabolismo , Técnicas de Sustitución del Gen , Transgenes/genética , Reparación del ADN por Recombinación
2.
bioRxiv ; 2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36712002

RESUMEN

Designer T cells offer a novel paradigm for treating diseases like cancer, yet they are often hindered by target recognition evasion and limited in vivo control. To overcome these challenges, we develop valency-controlled receptors (VCRs), a novel class of synthetic receptors engineered to enable precise modulation of immune cell activity. VCRs use custom-designed valency-control ligands (VCLs) to modulate T cell signaling via spatial molecular clustering. Using multivalent DNA origami as VCL, we first establish that valency is important for tuning the activity of CD3-mediated immune activation. We then generate multivalent formats of clinically relevant drugs as VCL and incorporate VCR into the architecture of chimeric antigen receptors (CARs). Our data demonstrate that VCL-mediated VCRs can significantly amplify CAR activities and improve suboptimal CARs. Finally, through medicinal chemistry, we synthesize programmable, bioavailable VCL drugs that potentiate targeted immune response against low-antigen tumors both in vitro and in vivo. Our findings establish receptor valency as a core mechanism for enhancing CAR functionality and offer a synthetic chemical biology platform for strengthening customizable, potent, and safer cell therapies.

3.
Nat Commun ; 13(1): 2766, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589813

RESUMEN

A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Humanos , Liposomas , Nanopartículas , SARS-CoV-2/genética
4.
Nat Cell Biol ; 24(4): 590-600, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35414015

RESUMEN

Multiplexed modulation of endogenous genes is crucial for sophisticated gene therapy and cell engineering. CRISPR-Cas12a systems enable versatile multiple-genomic-loci targeting by processing numerous CRISPR RNAs (crRNAs) from a single transcript; however, their low efficiency has hindered in vivo applications. Through structure-guided protein engineering, we developed a hyper-efficient Lachnospiraceae bacterium Cas12a variant, termed hyperCas12a, with its catalytically dead version hyperdCas12a showing significantly enhanced efficacy for gene activation, particularly at low concentrations of crRNA. We demonstrate that hyperdCas12a has comparable off-target effects compared with the wild-type system and exhibits enhanced activity for gene editing and repression. Delivery of the hyperdCas12a activator and a single crRNA array simultaneously activating the endogenous Oct4, Sox2 and Klf4 genes in the retina of post-natal mice alters the differentiation of retinal progenitor cells. The hyperCas12a system offers a versatile in vivo tool for a broad range of gene-modulation and gene-therapy applications.


Asunto(s)
Proteínas Asociadas a CRISPR , Animales , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Ratones , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...