Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PLoS One ; 6(7): e22418, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21811604

RESUMEN

A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[(125)I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [(125)I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C(5) maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C(2) maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [(125)I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [(125)I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [(125)I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques.


Asunto(s)
Yodobencenos/síntesis química , Yodobencenos/metabolismo , Neoplasias/diagnóstico por imagen , Péptidos/síntesis química , Péptidos/metabolismo , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/metabolismo , Humanos , Radioisótopos de Yodo , Yodobencenos/química , Ligandos , Ratones , Datos de Secuencia Molecular , Péptidos/química , Distribución Tisular
2.
Anal Biochem ; 405(2): 246-54, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20561505

RESUMEN

Glycogen synthase kinase-3beta (GSK3beta) and casein kinase-1alpha (CK1alpha) are multifunctional kinases that play critical roles in the regulation of a number of cellular processes. In spite of their importance, molecular imaging tools for noninvasive and real-time monitoring of their kinase activities have not been devised. Here we report development of the bioluminescent GSK3beta and CK1alpha reporter (BGCR) based on firefly luciferase complementation. Treatment of SW620 cells stably expressing the reporter with inhibitors of GSK3beta (SB415286 and LiCl) or CK1alpha (CKI-7) resulted in dose- and time-dependent increases in BGCR activity that were validated using Western blotting. No increase in bioluminescence was observed in the case of S37A mutant (GSK3beta inhibitors) or S45A mutant (CKI-7), demonstrating the specificity of the reporter. Imaging of mice tumor xenograft generated with BGCR-expressing SW620 cells following treatment with LiCl showed unique oscillations in GSK3beta activity that were corroborated by phosphorylated GSK3beta immunoblotting. Taken together, the BGCR is a novel molecular imaging tool that reveals unique insight into GSK3beta and CK1alpha kinase activities and may provide a powerful tool in experimental therapeutics for rapid optimization of dose and schedule of targeted therapies and for monitoring therapeutic response.


Asunto(s)
Caseína Quinasa Ialfa/química , Glucógeno Sintasa Quinasa 3/química , Imagen Molecular/métodos , Animales , Caseína Quinasa Ialfa/metabolismo , Células Cultivadas , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Trasplante Heterólogo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Proteína Wnt3
3.
Clin Cancer Res ; 16(5): 1542-52, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20160061

RESUMEN

PURPOSE: Functional imaging biomarkers of cancer treatment response offer the potential for early determination of outcome through the assessment of biochemical, physiologic, and microenvironmental readouts. Cell death may result in an immunologic response, thus complicating the interpretation of biomarker readouts. This study evaluated the temporal effect of treatment-associated inflammatory activity on diffusion magnetic resonance imaging and 2-[(18)F]-fluoro-2-deoxy-D-glucose-positron emission tomography imaging (FDG-PET) biomarkers to delineate the effects of the inflammatory response on imaging readouts. EXPERIMENTAL DESIGN: Rats with intracerebral 9L gliosarcomas were separated into four groups consisting of control, an immunosuppressive agent dexamethasone (Dex), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and BCNU+Dex. Animals were imaged using diffusion-weighted magnetic resonance imaging and FDG-PET at 0, 3, and 7 days posttreatment. RESULTS: In the BCNU- and BCNU+Dex-treated animal groups, diffusion values increased progressively over the 7-day study period to approximately 23% over baseline. The FDG percentage change of standard uptake value decreased at day 3 (-30.9%) but increased over baseline levels at day 7 (+20.1%). FDG-PET of BCNU+Dex-treated animals were found to have percentage of standard uptake value reductions of -31.4% and -24.7% at days 3 and 7, respectively, following treatment. Activated macrophages were observed on day 7 in the BCNU treatment group with much fewer found in the BCNU+Dex group. CONCLUSIONS: Results revealed that treatment-associated inflammatory response following tumor therapy resulted in the accentuation of tumor diffusion response along with a corresponding increase in tumor FDG uptake due to the presence of glucose-consuming activated macrophages. The dynamics and magnitude of potential inflammatory response should be considered when interpreting imaging biomarker results.


Asunto(s)
Antineoplásicos/efectos adversos , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética , Inflamación/inducido químicamente , Tomografía de Emisión de Positrones , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Carmustina/efectos adversos , Dexametasona/efectos adversos , Fluorodesoxiglucosa F18 , Gliosarcoma/tratamiento farmacológico , Gliosarcoma/patología , Procesamiento de Imagen Asistido por Computador , Inflamación/patología , Radiofármacos , Ratas
4.
Gene Ther Mol Biol ; 13(1): 20-25, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19644570

RESUMEN

Curcumin, a compound found in the spice turmeric, has been shown to possess a number of beneficial biological activities exerted through a variety of different mechanisms. Some curcumin effects have been reported to involve activation of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ), but the concept that curcumin might be a PPAR-γ ligand remains controversial. Results reported here demonstrate that, in contrast to the PPAR-γ ligands ciglitazone and rosiglitazone, curcumin is inactive in five different reporter or DNA-binding assays, does not displace [(3)H]rosiglitazone from the PPAR-γ ligand-binding site, and does not induce PPAR-γ-dependent differentiation of preadipocytes, while its ability to inhibit fibroblast-to-myofibroblast differentiation is not affected by any of four PPAR-γ antagonists. These multiple lines of evidence conclusively demonstrate that curcumin is not a PPAR-γ ligand and indicate the need for further investigation of the mechanisms through which the compound acts.

5.
Respir Res ; 8: 90, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18053220

RESUMEN

BACKGROUND: While glucocorticoids are currently the most effective therapy for asthma, associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to modulate the asthmatic response compares to that of glucocorticoids remains unclear, however, because these two nuclear receptor agonists have never been studied concurrently. Additionally, effects of PPAR-gamma agonists have never been examined in a model involving an allergen commonly associated with human asthma. METHODS: We compared the effectiveness of the PPAR-gamma agonist pioglitazone (PIO) to the established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was administered throughout the period of airway CRA exposure. RESULTS: PIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness, pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-alpha, TGF-beta, RANTES, eotaxin, MIP3-alpha, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an adenovirus containing a constitutively active PPAR-gamma expression construct blocked CRA induction of Gob-5 and Muc5-ac. CONCLUSION: Given the potent effectiveness shown by PIO, we conclude that PPAR-gamma agonists deserve investigation as potential therapies for human asthma.


Asunto(s)
Alérgenos/toxicidad , Asma/tratamiento farmacológico , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Tiazolidinedionas/uso terapéutico , Animales , Antígenos de Plantas , Asma/inducido químicamente , Femenino , Ratones , Ratones Endogámicos BALB C , Pioglitazona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA