Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 811, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965360

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.


Asunto(s)
Encéfalo , Senescencia Celular , Herpes Simple , Herpesvirus Humano 1 , Esclerosis Múltiple , Animales , Ratones , Encéfalo/virología , Encéfalo/patología , Encéfalo/metabolismo , Esclerosis Múltiple/virología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/patogenicidad , Herpes Simple/virología , Herpes Simple/patología , Femenino , Ratones Endogámicos C57BL , Encefalomielitis Autoinmune Experimental/virología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Fenotipo , Sistema Nervioso Central/virología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Médula Espinal/virología , Médula Espinal/metabolismo , Médula Espinal/patología , Biomarcadores/metabolismo , Encefalitis por Herpes Simple/virología , Encefalitis por Herpes Simple/patología , Encefalitis por Herpes Simple/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1381180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752179

RESUMEN

Background: The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods: To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results: The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1ß, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion: This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Ratones , Masculino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenotipo , Conducta Animal , Hipotiroidismo/metabolismo , Tiroxina/sangre , Biomarcadores/metabolismo , Ratones Endogámicos C57BL , Complicaciones del Embarazo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Conducta Social
3.
Front Endocrinol (Lausanne) ; 14: 1192216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455925

RESUMEN

Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Disbiosis , Glándula Tiroides/metabolismo , Ácidos Grasos Volátiles/metabolismo , Intestinos/microbiología
4.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806081

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by a robust inflammatory response against myelin sheath antigens, which causes astrocyte and microglial activation and demyelination of the central nervous system (CNS). Multiple genetic predispositions and environmental factors are known to influence the immune response in autoimmune diseases, such as MS, and in the experimental autoimmune encephalomyelitis (EAE) model. Although the predisposition to suffer from MS seems to be a multifactorial process, a highly sensitive period is pregnancy due to factors that alter the development and differentiation of the CNS and the immune system, which increases the offspring's susceptibility to develop MS. In this regard, there is evidence that thyroid hormone deficiency during gestation, such as hypothyroidism or hypothyroxinemia, may increase susceptibility to autoimmune diseases such as MS. In this review, we discuss the relevance of the gestational period for the development of MS in adulthood.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Sistema Nervioso Central , Femenino , Esclerosis Múltiple/etiología , Vaina de Mielina , Embarazo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA