Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(6): 1254-1264, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38436259

RESUMEN

The reactivation of ubiquitously present Epstein-Barr virus (EBV) is known to be involved with numerous diseases, including neurological ailments. A recent in vitro study from our group unveiled the association of EBV and its 12-amino acid peptide glycoprotein M146-157 (gM146-157) with neurodegenerative diseases, viz., Alzheimer's disease (AD) and multiple sclerosis. In this study, we have further validated this association at the in vivo level. The exposure of EBV/gM146-157 to mice causes a decline in the cognitive ability with a concomitant increase in anxiety-like symptoms through behavioral assays. Disorganization of hippocampal neurons, cell shrinkage, pyknosis, and apoptotic appendages were observed in the brains of infected mice. Inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were found to be elevated in infected mouse brain tissue samples, whereas TNF-α exhibited a decline in the serum of these mice. Further, the altered levels of nuclear factor-kappa B (NF-kB) and neurotensin receptor 2 affirmed neuroinflammation in infected mouse brain samples. Similarly, the risk factor of AD, apolipoprotein E4 (ApoE4), was also found to be elevated at the protein level in EBV/gM146-157 challenged mice. Furthermore, we also observed an increased level of myelin basic protein in the brain cortex. Altogether, our results suggested an integral connection of EBV and its gM146-157 peptide to the neuropathologies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Animales , Ratones , Herpesvirus Humano 4/metabolismo , Infecciones por Virus de Epstein-Barr/patología , Factor de Necrosis Tumoral alfa/metabolismo , Citocinas , Glicoproteínas
2.
J Neurovirol ; 30(1): 22-38, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38189894

RESUMEN

Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.


Asunto(s)
Barrera Hematoencefálica , Esclerosis Múltiple , Barrera Hematoencefálica/virología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Humanos , Animales , Esclerosis Múltiple/virología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Ratones , Uniones Estrechas/virología , Uniones Estrechas/metabolismo , Permeabilidad Capilar , Células Endoteliales/virología , Células Endoteliales/metabolismo , Células Endoteliales/patología
3.
Front Immunol ; 14: 1192032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876925

RESUMEN

Background: EBV infection has long been postulated to trigger multiple sclerosis (MS) and anti-EBV antibodies showed a consistent presence in MS patients. Previous reports from our group have shown that the EBV infects different brain cells. Entry of the virus in neuronal cells is assisted by several host factors including membrane cholesterol. By using an inhibitor, methyl-ß-cyclodextrin (MßCD), we evaluated the role of membrane cholesterol in EBV infection and pathogenesis. Methodology: The membrane cholesterol depleted cells were infected with EBV and its latent genes expression were assessed. Further, EBV-mediated downstream signalling molecules namely STAT3, RIP, NF-kB and TNF-α levels was checked at protein level along with spatial (periphery and nucleus) and temporal changes in biomolecular fingerprints with Raman microspectroscopy (RS). Results: Upon treatment with MßCD, lmp1 and lmp2a suggested significant downregulation compared to EBV infection. Downstream molecules like STAT3 and RIP, exhibited a decrease in protein levels temporally upon exposure to MßCD while NF-kB levels were found to be increased. Further, the intensity of the Raman spectra exhibited an increase in triglycerides and fatty acids in the cytoplasm of EBV-infected LN-229 cells compared to MßCD+EBV. Likewise, the Raman peak width of cholesterol, lipid and fatty acids were found to be reduced in EBV-infected samples indicates elevation in the cholesterol specific moieties. In contrast, an opposite pattern was observed in the nucleus. Moreover, the ingenuity pathway analysis revealed protein molecules such as VLDLR, MBP and APP that are associated with altered profile of cholesterol, fatty acids and triglycerides with infection-related CNS disorders. Conclusion: Taken together, our results underline the important role of membrane cholesterol over EBV entry/pathogenesis in astroglia cells which further trigger/exacerbate virus-associated neuropathologies. These results likely to aid into the prognosis of neurological disease like MS.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Humanos , Herpesvirus Humano 4 , Astrocitos/patología , FN-kappa B , Colesterol , Triglicéridos , Ácidos Grasos
4.
ACS Chem Neurosci ; 14(17): 2968-2980, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37590965

RESUMEN

Epigallocatechin-3-gallate (EGCG), a polyphenolic moiety found in green tea extracts, exhibits pleiotropic bioactivities to combat many diseases including neurological ailments. These neurological diseases include Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. For instance, in the case of Alzheimer's disease, the formation of a ß-sheet in the region of the 10th-21st amino acids was significantly reduced in EGCG-induced oligomeric samples of Aß40. Its interference induces the formation of Aß structures with an increase in intercenter-of-mass distances, reduction in interchain/intrachain contacts, reduction in ß-sheet propensity, and increase in α-helix. Besides, numerous neurotropic viruses are known to instigate or aggravate neurological ailments. It exerts an effect on the oxidative damage caused in neurodegenerative disorders by acting on GSK3-ß, PI3K/Akt, and downstream signaling pathways via caspase-3 and cytochrome-c. EGCG also diminishes these viral-mediated effects, such as EGCG delayed HSV-1 infection by blocking the entry for virions, inhibitory effects on NS3/4A protease or NS5B polymerase of HCV and potent inhibitor of ZIKV NS2B-NS3pro/NS3 serine protease (NS3-SP). It showed a reduction in the neurotoxic properties of HIV-gp120 and Tat in the presence of IFN-γ. EGCG also involves numerous viral-mediated inflammatory cascades, such as JAK/STAT. Nonetheless, it also inhibits the Epstein-Barr virus replication protein (Zta and Rta). Moreover, it also impedes certain viruses (influenza A and B strains) by hijacking the endosomal and lysosomal compartments. Therefore, the current article aims to describe the importance of EGCG in numerous neurological diseases and its inhibitory effect against neurotropic viruses.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Virus de Epstein-Barr , Enfermedades del Sistema Nervioso , Infección por el Virus Zika , Virus Zika , Humanos , Glucógeno Sintasa Quinasa 3 , Fosfatidilinositol 3-Quinasas , Herpesvirus Humano 4
5.
ACS Chem Neurosci ; 14(13): 2450-2460, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290090

RESUMEN

Epstein-Barr virus (EBV) is known to be associated with several cancers along with neurological modalities like Alzheimer's disease (AD) and multiple sclerosis (MS). Previous study from our group revealed that a 12 amino acid peptide fragment (146SYKHVFLSAFVY157) of EBV glycoprotein M (gM) exhibits amyloid-like self-aggregative properties. In the current study, we have investigated its effect on Aß42 aggregation along with its effect on neural cell immunology and disease markers. EBV virion was also considered for the above-mentioned investigation. An increase in the aggregation of Aß42 peptide was observed upon incubation with gM146-157. Further, the exposure of EBV and gM146-157 onto neuronal cells indicated the upregulation of inflammatory molecules like IL-1ß, IL-6, TNF-α, and TGF-ß that suggested neuroinflammation. Besides, host cell factors like mitochondrial potential and calcium ion signaling play a crucial role in cellular homeostasis and alterations in these factors aid in neurodegeneration. Changes in mitochondrial membrane potential manifested a decrease while elevation in the level of total Ca2+ ions was observed. Amelioration of Ca2+ ions triggers excitotoxicity in neurons. Subsequently, neurological disease-associated genes APP, ApoE4, and MBP were found to be increased at the protein level. Additionally, demyelination of neurons is a hallmark of MS and the myelin sheath consists of ∼70% of lipid/cholesterol-associated moieties. Hereby, genes associated with cholesterol metabolism indicated changes at the mRNA level. Enhanced expression of neurotropic factors like NGF and BDNF was discerned postexposure to EBV and gM146-157. Altogether, this study delineates a direct connection of EBV and its peptide gM146-157 with neurological illnesses.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Herpesvirus Humano 4/fisiología , Infecciones por Virus de Epstein-Barr/complicaciones , Péptidos , Glicoproteínas
6.
Biotechnol Adv ; 63: 108078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36513315

RESUMEN

Bacteria emit a large number of volatile organic compounds (VOCs) into the environment. VOCs are species-specific and their emission depends on environmental conditions, such as growth medium, pH, temperature, incubation time and interaction with other microorganisms. These VOCs can enhance plant growth, suppress pathogens and act as signaling molecules during plant-microorganism interactions. Some bacterial VOCs have been reported to show strong antimicrobial, nematicidal, pesticidal, plant defense, induced tolerance and plant-growth-promoting activities under controlled conditions. Commonly produced antifungal VOCs include dimethyl trisulfide, dimethyl disulfide, benzothiazole, nonane, decanone and 1-butanol. Species of Bacillus, Pseudomonas, Arthrobacter, Enterobacter and Burkholderia produce plant growth promoting VOCs, such as acetoin and 2,3-butenediol. These VOCs affect expression of genes involved in defense and development in plant species (i.e., Arabidopsis, tobacco, tomato, potato, millet and maize). VOCs are also implicated in altering pathogenesis-related genes, inducing systemic resistance, modulating plant metabolic pathways and acquiring nutrients. However, detailed mechanisms of action of VOCs need to be further explored. This review summarizes the bioactive VOCs produced by diverse bacterial species as an alternative to agrochemicals, their mechanism of action and challenges for employment of bacterial VOCs for sustainable agricultural practices. Future studies on technological improvements for bacterial VOCs application under greenhouse and open field conditions are warranted.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Agentes de Control Biológico , Bacterias/genética , Bacterias/metabolismo , Desarrollo de la Planta
7.
Microb Pathog ; 174: 105946, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36526038

RESUMEN

Viruses utilize clever strategies of interacting with various cellular factors, to remodel an organelle function, for the establishment of successful infection. In recent decades, numerous studies revealed the exploitation of the peroxisomal compartment by viruses. Epstein-Barr virus (EBV) is a ubiquitous virus linked with various cancers and neurological disorders. Till now, there is no report regarding the impacts of EBV infection on peroxisomal compartment. Therefore, we investigate the modulation of peroxisomal proteins in EBV transformed cell lines and during acute EBV infection. EBV positive Burkitt lymphoma cells of different origins as EBV transformed cells along with EBV negative Burkitt lymphoma cells as a control were used in this study. For acute EBV infection experiments, we infected peripheral blood mononuclear cells with EBV for three days. Thereafter, analyzed the gene expression patterns of peroxisomal proteins using qPCR. In addition, quantification of lipid content was performed by using fluorescence microscopy and biochemical assay. Our results revealed that, the peroxisomal proteins were distinctly regulated in EBV transformed cells and during acute EBV infection. Interestingly, PEX19 was significantly upregulated in EBV infected cells. Further, in correlation with the altered expression of peroxisomes proteins involved in lipid metabolism, the EBV transformed cells showed lower lipid abundance. Conversely, the lipid levels were increased during acute EBV infection. Our study highlights the importance of investigating the manipulation of the peroxisomal compartment by putting forward various differentially expressed proteins upon EBV infection. This study provides a base for further investigation to delve deeper into EBV and peroxisomal interactions. The future research in this direction could provide involvement of novel signaling pathways to understand molecular changes during EBV mediated pathologies.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Leucocitos Mononucleares/metabolismo , Lípidos
8.
Tumour Virus Res ; 12: 200227, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34800753

RESUMEN

Herpesviruses are ubiquitous viruses, specifically the Epstein Barr virus (EBV). EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) establish their latency for a long period in B-cells and their reactivation instigates dreadful diseases from cancer to neurological modalities. The envelope glycoprotein of these viruses makes an attachment with several host receptors. For instance; glycoprotein 350/220, gp42, gHgL and gB of EBV establish an attachment with CD21, HLA-DR, Ephs, and other receptor molecules to hijack the B- and epithelial cell machinery. Ephs are reported recently as potent receptors for EBV entry into epithelial cells. Eph receptors play a role in the maintenance and control of various cellular processes including morphology, adhesion, proliferation, survival and differentiation. Alterations in the structure and expression of Eph and ephrin (Eph ligands) molecules is entangled with various pathologies including tumours and neurological complications. Along with Eph, integrins, NRP, NMHC are also key players in viral infections as they are possibly involved in viral transmission, replication and persistence. Contrarily, KSHV gH is known to interact with EphA2 and -A4 molecules, whereas in the case of EBV only EphA2 receptors are being reported to date. The ELEFN region of KSHV gH was involved in the interaction with EphA2, however, the interacting region of EBV gH is elusive. Further, the gHgL of KSHV and EBV form a complex with the EphA2 ligand-binding domain (LBD). Primarily by using gL both KSHV and EBV gHgL bind to the peripheral regions of LBD. In addition to γ-herpesviruses, several other viruses like Nipah virus, Cedar virus, Hepatitis C virus and Rhesus macaque rhadinovirus (RRV) also access the host cells via Eph receptors. Therefore, we summarise the possible roles of Eph and ephrins in virus-mediated infection and these molecules could serve as potential therapeutic targets.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Virosis , Animales , Células Epiteliales , Herpesvirus Humano 4 , Humanos , Macaca mulatta , Proteínas del Envoltorio Viral , Internalización del Virus
9.
ACS Chem Neurosci ; 12(16): 3060-3072, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34340305

RESUMEN

Epstein-Barr virus (EBV), a known tumorigenic virus, is associated with various neuropathies, including multiple sclerosis (MS). However, there is no anti-EBV FDA-approved drug available in the market. Our study targeted EBV protein EBV nuclear antigen 1 (EBNA1), crucial in virus replication and expressed in all the stages of viral latencies. This dimeric protein binds to an 18 bp palindromic DNA sequence and initiates the process of viral replication. We chose phytochemicals and FDA-approved MS drugs based on literature survey followed by their evaluation efficacies as anti-EBNA1 molecules. Molecular docking revealed FDA drugs ozanimod, siponimod, teriflunomide, and phytochemicals; emodin; protoapigenone; and EGCG bound to EBNA1 with high affinities. ADMET and Lipinski's rule analysis of the phytochemicals predicted favorable druggability. We supported our assessments of pocket druggability with molecular dynamics simulations and binding affinity predictions by the molecular mechanics generalized Born surface area (MM/GBSA) method. Our results establish a stable binding for siponimod and ozanimod with EBNA1 mainly via van der Waals interactions. We identified hot spot residues like I481', K477', L582', and K586' in the binding of ligands. In particular, K477' at the amino terminal of EBNA1 is known to establish interaction with two bases at the major groove of the DNA. Siponimod bound to EBNA1 engaging K477', thus plausibly making it unavailable for DNA interaction. Computational alanine scanning further supported the significant roles of K477', I481', and K586' in the binding of ligands with EBNA1. Conclusively, the compounds showed promising results to be used against EBNA1.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
10.
Heliyon ; 6(12): e05706, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33324769

RESUMEN

Coronaviruses are large positive-sense RNA viruses with spike-like peplomers on their surface. The Coronaviridae family's strains infect different animals and are popularly associated with several outbreaks, namely SARS and MERS epidemic. COVID-19 is one such recent outbreak caused by SARS-CoV-2 identified first in Wuhan, China. COVID-19 was declared a pandemic by WHO on 11th March 2020. Our review provides information covering various facets of the disease starting from its origin, transmission, mutations in the virus to pathophysiological changes in the host upon infection followed by diagnostics and possible therapeutics available to tackle the situation. We have highlighted the zoonotic origin of SARS-CoV-2, known to share 96.2% nucleotide similarity with bat coronavirus. Notably, several mutations in SARS-CoV-2 spike protein, nucleocapsid protein, PLpro, and ORF3a are reported across the globe. These mutations could alter the usual receptor binding function, fusion process with the host cell, virus replication, and the virus's assembly. Therefore, studying these mutations could help understand the virus's virulence properties and design suitable therapeutics. Moreover, the aggravated immune response to COVID-19 can be fatal. Hypertension, diabetes, and cardiovascular diseases are comorbidities substantially associated with SARS-CoV-2 infection. The review article discusses these aspects, stating the importance of various comorbidities in disease outcomes. Furthermore, medications' unavailability compels the clinicians to opt for atypical drugs like remdesivir, chloroquine, etc. The current diagnostics of COVID-19 include qRT-PCR, CT scan, serological tests, etc. We have described these aspects to expose the information to the scientific community and to accelerate the research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...