Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurophotonics ; 11(1): 015007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38344025

RESUMEN

Significance: There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim: Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach: Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion: We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.

2.
IEEE Trans Med Imaging ; 43(2): 874-885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37847617

RESUMEN

The ultimate goal of photoacoustic tomography is to accurately map the absorption coefficient throughout the imaged tissue. Most studies either assume that acoustic properties of biological tissues such as speed of sound (SOS) and acoustic attenuation are homogeneous or fluence is uniform throughout the entire tissue. These assumptions reduce the accuracy of estimations of derived absorption coefficients (DeACs). Our quantitative photoacoustic tomography (qPAT) method estimates DeACs using iteratively refined wavefield reconstruction inversion (IR-WRI) which incorporates the alternating direction method of multipliers to solve the cycle skipping challenge associated with full wave inversion algorithms. Our method compensates for SOS inhomogeneity, fluence decay, and acoustic attenuation. We evaluate the performance of our method on a neonatal head digital phantom.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Técnicas Fotoacústicas , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía/métodos , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Simulación por Computador , Técnicas Fotoacústicas/métodos , Algoritmos
3.
Biomed Opt Express ; 13(2): 676-693, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284180

RESUMEN

Transfontanelle ultrasound imaging (TFUI) is the conventional approach for diagnosing brain injury in neonates. Despite being the first stage imaging modality, TFUI lacks accuracy in determining the injury at an early stage due to degraded sensitivity and specificity. Therefore, a modality like photoacoustic imaging that combines the advantages of both acoustic and optical imaging can overcome the existing TFUI limitations. Even though a variety of transducers have been used in TFUI, it is essential to identify the transducer specification that is optimal for transfontanelle imaging using the photoacoustic technique. In this study, we evaluated the performance of 6 commercially available ultrasound transducer arrays to identify the optimal characteristics for transfontanelle photoacoustic imaging. We focused on commercially available linear and phased array transducer probes with center frequencies ranging from 2.5MHz to 8.5MHz which covers the entire spectrum of the transducer arrays used for brain imaging. The probes were tested on both in vitro and ex vivo brain tissue, and their performance in terms of transducer resolution, size, penetration depth, sensitivity, signal to noise ratio, signal amplification and reconstructed image quality were evaluated. The analysis of selected transducers in these areas allowed us to determine the optimal transducer for transfontanelle imaging, based on vasculature depth and blood density in tissue using ex vivo sheep brain. The outcome of this evaluation identified the two most suitable ultrasound transducer probes for transfontanelle photoacoustic imaging.

4.
J Biophotonics ; 15(6): e202200016, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35285133

RESUMEN

One of the key challenges in linear array transducer-based photoacoustic computed tomography is to image structures embedded deep within the biological tissue with limited optical energy. Here, we utilized a manually controlled multi-angle illumination technique to allow the incident photons to interact with the imaging targets for longer periods of time and diffuse further in all directions. We have developed and optimized a compact probe that enables manual changes to the angle of illumination while acquiring photoacoustic signals. The performance has been demonstrated and evaluated by imaging complex blood vessel mimicking phantoms in-vitro and sheep brain samples ex-vivo. For effective image reconstruction from the data acquired by multi-angle illumination method, we have utilized a method based on the extraction of maximum intensity. In both cases, multi-angle illumination has out-performed the conventional fixed angle illumination technique to improve the overall image quality. Specifically, extraction of the imaging targets located at greater axial depths was possible using this multi-angle illumination technique.


Asunto(s)
Técnicas Fotoacústicas , Animales , Encéfalo/diagnóstico por imagen , Iluminación , Fantasmas de Imagen , Técnicas Fotoacústicas/métodos , Ovinos , Tomografía Computarizada por Rayos X/métodos
5.
Food Sci Nutr ; 9(10): 5883-5896, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34646553

RESUMEN

Coronaviruses, which have been enveloped nonsegmented positive-sense RNA viruses, were first mentioned in the mid-1960s and can attack people as well as a wide range of animals (including mammals and birds). Three zoonotic coronaviruses have been identified as the cause of large-scale epidemics over the last two decades: Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and swine acute diarrhea syndrome (SADS). Epithelial cells in the respiratory and gastrointestinal tract are the principal targeted cells, and viral shedding occurs via these systems in diverse ways such as through fomites, air, or feces. Patients infected with the novel coronavirus (2019-nCoV) reported having visited the Wuhan seafood wholesale market shortly before disease onset. The clinical data on established 2019-nCoV cases reported so far indicate a milder disease course than that described for patients with SARS-CoV or MERS-CoV. This study aimed to review radiation inactivation of these viruses in the food industry in three sections: visible light, ionizing radiation (alpha ray, beta ray, X-ray, gamma ray, neutron, plasma, and ozone), and nonionizing radiation (microwave, ultraviolet, infrared, laser light, and radiofrequency). Due to the obvious possibility of human-to-human and animal-to-human transmission, using at least one of these three methods in food processing and packaging during coronavirus outbreaks will be critical for preventing further outbreaks at the community level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...