Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3511, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241734

RESUMEN

Genetic Leukoencephalopathies (gLEs) are heritable white matter disorders that cause progressive neurological abnormalities. A founder mutation in the human endolysosomal trafficking protein VPS11 has been identified in Ashkenazi Jewish patients manifesting classic gLE symptoms of hypomyelination, developmental delay, motor and systemic deficits. In this study, we characterized the visual and sensorimotor function of two zebrafish vps11 mutant lines: the previously reported vps11(plt), and a new vps11(-/-) null mutant line, using behavioral analysis to track larval motor responses to visual and acoustic stimuli. We found that mutant larvae from both vps11(plt) and vps11(-/-) lines were able to visually distinguish light and dark, but showed a progressive loss of a normal sensorimotor response to visual stimuli from 5 days post fertilization (dpf) to 7dpf. Additionally, optokinetic response analysis performed at 5dpf indicated that the mutants were significantly visually impaired. Both mutant lines also displayed a progressively lower sensorimotor response to a singular acoustic stimulus from 5-7dpf. Next, we tested the habituation response of the mutant lines to series of acoustic taps. We found both mutant lines habituated faster than their siblings, and that vps11(plt) mutants habituated faster than the vps11(-/-) mutants. Together, these data suggest that loss of Vps11 function results in progressive visual and sensorimotor abnormalities in the zebrafish vps11(plt) and vps11(-/-) mutant lines. This is the first study to characterize behavioral deficits in a vertebrate model of Vps11-dependent gLE. The mutants and behavioral assays described here could be a valuable model system in which to test potential pharmacological interventions for gLE.


Asunto(s)
Leucoencefalopatías , Proteínas de Transporte Vesicular , Proteínas de Pez Cebra , Pez Cebra , Animales , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Nistagmo Optoquinético , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Visión Ocular , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Toxics ; 7(4)2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31546644

RESUMEN

Recent studies suggest that organophosphates and carbamates affect human fetal development, resulting in neurological and growth impairment. However, these studies are conflicting and the extent of adverse effects due to pesticide exposure warrants further investigation. In the present study, we examined the impact of the carbamate insecticide propoxur on zebrafish development. We found that propoxur exposure delays embryonic development, resulting in three distinct developmental stages: no delay, mild delay, or severe delay. Interestingly, the delayed embryos all physically recovered 5 days after exposure, but behavioral analysis revealed persistent cognitive deficits at later stages. Microarray analysis identified 59 genes significantly changed by propoxur treatment, and Ingenuity Pathway Analysis revealed that these genes are involved in cancer, organismal abnormalities, neurological disease, and hematological system development. We further examined hspb9 and hspb11 due to their potential roles in zebrafish development and found that propoxur increases expression of these small heat shock proteins in all of the exposed animals. However, we discovered that less significant increases were associated with the more severely delayed phenotype. This raises the possibility that a decreased ability to upregulate these small heat shock proteins in response to propoxur exposure may cause embryos to be more severely delayed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA