Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theranostics ; 13(8): 2384-2407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215577

RESUMEN

Background: Small cell lung cancer (SCLC) is an extremely aggressive cancer type with a patient median survival of 6-12 months. Epidermal growth factor (EGF) signaling plays an important role in triggering SCLC. In addition, growth factor-dependent signals and alpha-, beta-integrin (ITGA, ITGB) heterodimer receptors functionally cooperate and integrate their signaling pathways. However, the precise role of integrins in EGF receptor (EGFR) activation in SCLC remains elusive. Methods: We analyzed human precision-cut lung slices (hPCLS), retrospectively collected human lung tissue samples and cell lines by classical methods of molecular biology and biochemistry. In addition, we performed RNA-sequencing-based transcriptomic analysis in human lung cancer cells and human lung tissue samples, as well as high-resolution mass spectrometric analysis of the protein cargo from extracellular vesicles (EVs) that were isolated from human lung cancer cells. Results: Our results demonstrate that non-canonical ITGB2 signaling activates EGFR and RAS/MAPK/ERK signaling in SCLC. Further, we identified a novel SCLC gene expression signature consisting of 93 transcripts that were induced by ITGB2, which may be used for stratification of SCLC patients and prognosis prediction of LC patients. We also found a cell-cell communication mechanism based on EVs containing ITGB2, which were secreted by SCLC cells and induced in control human lung tissue RAS/MAPK/ERK signaling and SCLC markers. Conclusions: We uncovered a mechanism of ITGB2-mediated EGFR activation in SCLC that explains EGFR-inhibitor resistance independently of EGFR mutations, suggesting the development of therapies targeting ITGB2 for patients with this extremely aggressive lung cancer type.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Estudios Retrospectivos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Integrinas/genética , Mutación
2.
Int J Biol Macromol ; 102: 805-812, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28450245

RESUMEN

Glucose inhibition of ß-glucosidase (BG) is a bottleneck in biomass hydrolysis. In this study, a glucose resistant GH1 ß-glucosidase gene- Mbgl from Methylococcus capsulatus (bath strain) was cloned and overexpressed in E.coli. The Ni-NTA affinity purified Mbgl displayed an optimum temperature of 70°C and optimum pH was 6.0. The calculated KM of the enzyme was 48.6mM and 0.12mM for cellobiose and 4-Nitrophenyl ß-d-glucopyranoside (PNPG) respectively. PNPG hydrolysis in presence of various glucose concentrations showed that the enzyme was stimulated by ∼2.2 fold at 50mM glucose and was not inhibited up to 450-500mM glucose. Homology modeling and structural comparisons of Mbgl with a glucose tolerant ß-glucosidase of Humicola insolens (HiBG) revealed that the Mbgl has a much broader active site unlike to a deep and narrow active site pocket of HiBG. The difference in active site shape reflects on an alternative mechanism of glucose tolerance in Mbgl. Supplementing a commercial cellulase enzyme mixture CTec with Mbgl in the hydrolysis of the pretreated rice straw enhanced the glucose yield by 10-15%. In addition, Mbgl was also stable in organic solvents, detergents and oxidative conditions which would be advantageous for biotechnological applications.


Asunto(s)
Methylococcus capsulatus/enzimología , Temperatura , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Biocatálisis , Dominio Catalítico , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Glucosa/farmacología , Concentración de Iones de Hidrógeno , Methylococcus capsulatus/genética , Modelos Moleculares , Oxidantes/farmacología , Solventes/farmacología , Especificidad por Sustrato , beta-Glucosidasa/antagonistas & inhibidores , beta-Glucosidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...