Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 46(3): 1344-51, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22191788

RESUMEN

Asbestos is a known human carcinogen, and recent regulation in California limits asbestiform fibers in brakes to trace levels beginning in 2014, although there is no corresponding federal requirement. In order to gauge the current prevalence of asbestos use in automotive brake applications, the California Air Resources Board tested brake linings from 137 light- and medium-duty vehicles and 54 heavy-duty vehicles. Only about 3% of the light- and medium-duty vehicle brake linings contained chrysotile asbestos. All of those brake linings were drum-type shoes, which are generally being phased out. No asbestos was found in low mileage vehicles presumed to have their original stock linings from the vehicle manufacturer. Additionally, no asbestos was found in the heavy-duty vehicle brake shoe linings sampled. Given the small percentage of vehicle brake linings with asbestos observed, it appears that the prior federal ban that was subsequently overturned, in combination with a threat of litigation, has reduced asbestos use in brake linings. However, our study was limited in scope and without a national ban, the current and future prevalence of asbestos in brakes is uncertain, suggesting the need for continued monitoring of materials released as toxic air contaminants in normal braking operations.


Asunto(s)
Amianto/análisis , Contaminación Ambiental/prevención & control , Vehículos a Motor , Material Particulado/análisis , California , Contaminación Ambiental/legislación & jurisprudencia , Humanos , Microscopía , Encuestas y Cuestionarios
2.
Ecol Appl ; 20(5): 1320-35, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20666252

RESUMEN

Fire risk in deserts is increased by high production of annual forbs and invasive grasses that create a continuous fine fuel bed in the interspaces between shrubs. Interspace production is influenced by water, nitrogen (N) availability, and soil texture, and in some areas N availability is increasing due to anthropogenic N deposition. The DayCent model was used to investigate how production of herbaceous annuals changes along gradients of precipitation, N availability, and soil texture, and to develop risk-based critical N loads. DayCent was parameterized for two vegetation types within Joshua Tree National Park, California, USA: creosote bush (CB) and piñon-juniper (PJ). The model was successfully calibrated in both vegetation types, but validation showed that the model is sensitive to soil clay content. Despite this fact, DayCent (the daily version of the biogeochemical model CENTURY) performed well in predicting the relative response of production to N fertilization and was used to determine estimates of fire risk for these ecosystems. Fire risk, the probability that annual biomass exceeds the fire threshold of 1000 kg/ha, was determined for each vegetation type and began to increase when N deposition increased 0.05 g/m2 above background levels (0.1 g/m2). Critical loads were calculated as the amount of N deposition at the point when fire risk began to increase exponentially. Mean critical loads for all soil types and precipitation <21 cm/yr, representing the majority of our study region, were 0.32 +/- 0.07 and 0.39 +/- 0.09 g N/m2 for CB and PJ, respectively. Critical loads decreased with increasing soil clay content and increasing precipitation, such that the wettest areas with clay contents of 6-14% may have critical loads as low as 0.15 g N/m2. Mean fire risks approached their maximum at 0.93 +/- 0.21 and 0.87 +/- 0.17 g N/m2 in CB and PJ, indicating that precipitation is the driver of fire above these N deposition levels, which are currently observed in some areas of the Sonoran and Mojave Deserts. Overall, this analysis demonstrates the importance of considering both N deposition and precipitation when evaluating fire risk across arid landscapes.


Asunto(s)
Incendios , Nitrógeno/análisis , California , Medición de Riesgo
3.
Oecologia ; 162(4): 1035-46, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19967416

RESUMEN

Primary production in deserts is limited by soil moisture and N availability, and thus is likely to be influenced by both anthropogenic N deposition and precipitation regimes altered as a consequence of climate change. Invasive annual grasses are particularly responsive to increases in N and water availabilities, which may result in competition with native forb communities. Additionally, conditions favoring increased invasive grass production in arid and semi-arid regions can increase fire risk, negatively impacting woody vegetation that is not adapted to fire. We conducted a seeded garden experiment and a 5-year field fertilization experiment to investigate how winter annual production is altered by increasing N supply under a range of water availabilities. The greatest production of invasive grasses and native forbs in the garden experiment occurred under the highest soil N (inorganic N after fertilization = 2.99 g m(-2)) and highest watering regime, indicating these species are limited by both water and N. A classification and regression tree (CART) analysis on the multi-year field fertilization study showed that winter annual biomass was primarily limited by November-December precipitation. Biomass exceeded the threshold capable of carrying fire when inorganic soil N availability was at least 3.2 g m(-2) in piñon-juniper woodland. Due to water limitation in creosote bush scrub, biomass exceeded the fire threshold only under very wet conditions regardless of soil N status. The CART analyses also revealed that percent cover of invasive grasses and native forbs is primarily dependent on the timing and amount of precipitation and secondarily dependent on soil N and site-specific characteristics. In total, our results indicate that areas of high N deposition will be susceptible to grass invasion, particularly in wet years, potentially reducing native species cover and increasing the risk of fire.


Asunto(s)
Biomasa , Clima Desértico , Nitrógeno/metabolismo , Desarrollo de la Planta , Lluvia , Estaciones del Año , Agua/análisis , Agricultura , California , Cambio Climático , Fertilización , Incendios , Geografía , Plantas/clasificación , Poaceae/crecimiento & desarrollo , Análisis de Regresión , Suelo/análisis , Factores de Tiempo
4.
ScientificWorldJournal ; 7 Suppl 1: 247-63, 2007 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17450303

RESUMEN

The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N) deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C) and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient. Tree basal area increased during the 30-year interval in five of the sites. The two westernmost sites had 30-45% cover divided equally between native and exotic understory herbaceous species, while the other sites had only 3-13% cover dominated by native species. The high production is likely related to higher precipitation at the western sites as well as elevated N. The species richness was in the range of 24 to 30 in four of the sites, but one site of intermediate N deposition had 42 species, while the easternmost, least polluted site had 57 species. These were primarily native species, as no site had more than one to three exotic species. In three of six sites, 20-40% of species were lost between 1973 and 2003, including the two westernmost sites. Two sites with intermediate pollution had little change in total species number over 30 years, and the easternmost site had more species in 2003. The easternmost site is also the driest and has the most sunlight filtering to the forest floor, possibly accounting for the higher species richness. The confounding effects of the precipitation gradient and possibly local disturbances do not show a simple correlation of air pollution with patterns of native and invasive species cover and richness. Nevertheless, the decline of native species and dominance by exotic species in the two westernmost polluted sites is cause for concern that air pollution is affecting the understory vegetation adversely.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire , Biodiversidad , Nitrógeno/análisis , Ozono/análisis , Tracheophyta , Árboles , California , Carbono/análisis , Geografía , Concentración de Iones de Hidrógeno , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...