Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
R Soc Open Sci ; 8(1): 201309, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33614074

RESUMEN

Spatio-temporal dynamics in habitat suitability and connectivity among mosaics of heterogeneous wetlands are critical for biological diversity and species persistence in aquatic patchy landscapes. Despite the recognized importance of stochastic hydroclimatic forcing in driving wetlandscape hydrological dynamics, linking such effects to emergent dynamics of metapopulation poses significant challenges. To fill this gap, we propose here a dynamic stochastic patch occupancy model (SPOM), which links parsimonious hydrological and ecological models to simulate spatio-temporal patterns in species occupancy in wetlandscapes. Our work aims to place ecological studies of patchy habitats into a proper hydrologic and climatic framework to improve the knowledge about metapopulation shifts in response to climate-driven changes in wetlandscapes. We applied the dynamic version of the SPOM (D-SPOM) framework in two wetlandscapes in the US with contrasting landscape and climate properties. Our results illustrate that explicit consideration of the temporal dimension proposed in the D-SPOM is important to interpret local- and landscape-scale patterns of habitat suitability and metapopulation occupancy. Our analyses show that spatio-temporal dynamics of patch suitability and accessibility, driven by the stochasticity in hydroclimatic forcing, influence metapopulation occupancy and the topological metrics of the emergent wetlandscape dispersal network. D-SPOM simulations also reveal that the extinction risk in dynamic wetlandscapes is exacerbated by extended dry periods when suitable habitat decreases, hence limiting successful patch colonization and exacerbating metapopulation extinction risks. The proposed framework is not restricted only to wetland studies but could also be applied to examine metapopulation dynamics in other types of patchy habitats subjected to stochastic external disturbances.

2.
Nat Commun ; 11(1): 6302, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298943

RESUMEN

Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that ~75% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least one-third of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes.

3.
Sci Rep ; 10(1): 14696, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895428

RESUMEN

The connectivity among distributed wetlands is critical for aquatic habitat integrity and to maintain metapopulation biodiversity. Here, we investigated the spatiotemporal fluctuations of wetlandscape connectivity driven by stochastic hydroclimatic forcing, conceptualizing wetlands as dynamic habitat nodes in dispersal networks. We hypothesized that spatiotemporal hydrologic variability influences the heterogeneity in wetland attributes (e.g., size and shape distributions) and wetland spatial organization (e.g., gap distances), in turn altering the variance of the dispersal network topology and the patterns of ecological connectivity. We tested our hypotheses by employing a DEM-based, depth-censoring approach to assess the eco-hydrological dynamics in a synthetically generated landscape and three representative wetlandscapes in the United States. Network topology was examined for two end-member connectivity measures: centroid-to-centroid (C2C), and perimeter-to-perimeter (P2P), representing the full range of within-patch habitat preferences. Exponentially tempered Pareto node-degree distributions well described the observed structural connectivity of both types of networks. High wetland clustering and attribute heterogeneity exacerbated the differences between C2C and P2P networks, with Pareto node-degree distributions emerging only for a limited range of P2P configuration. Wetlandscape network topology and dispersal strategies condition species survival and biodiversity.

4.
Sci Total Environ ; 697: 134145, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32380617

RESUMEN

We employed the well-established Horton-Strahler, hierarchical, stream-order (ω) scheme to investigate scaling of nutrient loads (P and N) from ~845 wastewater treatment plants (WWTPs) distributed along the river network in urbanized Weser River, the largest national basin in Germany (~46K km2; ~8.4 million population). We estimated hydrologic and water quality impacts at the reach- and basin-scales, at two steady river discharge conditions (median flow, QR50; low-flow, QR90). Of the five WWTPs class-sizes (1 ≤ k ≤ 5), ~68% discharge to small low-order streams (ω < 3). We found large variations in capacity to dilute WWTP nutrient loads because of variability in (1) treated wastewater discharge (QU) within and among different class-sizes, and (2) river discharge (QR) within low-order streams (ω < 3) resulting from differences in drainage areas. For QR50, reach-scale water quality impairment assessed by nutrient concentration was likely at 136 (~16%) locations for P and 15 locations (~2%) for N. About 90% of these locations were lower-order streams (ω < 3). At QR50 and only with dilution, basin-scale cumulative nutrient loads from multiple upstream WWTPs increase impaired locations to 266 (~32% of total) for P. Considering in-stream uptake decreased P-impaired streams to 225 (~27%), suggesting the dominant role of dilution in the Weser River basin. Role of in-stream uptake diminished along the flow paths, while dilution in larger streams (4 ≤ ω ≤ 7) minimizes the impact of WWTP loads. Under QR90 conditions [(QR50/QR90) ~ 2.5], water quality impaired locations will likely double for the basin-scale analyses. Long-term water quality data suggested that diffuse sources are the primary contributors for water quality impairments in large streams. Our data-modeling synthesis approach is transferable to other urbanized river basins and extends understanding of point source impacts on water quality across spatial scales.

5.
J Contam Hydrol ; 164: 100-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24973505

RESUMEN

Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site.


Asunto(s)
Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental/métodos , Agua Subterránea , Hidrocarburos Bromados/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Australia Occidental
6.
Risk Anal ; 33(3): 356-67, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22967095

RESUMEN

Recent natural and man-made catastrophes, such as the Fukushima nuclear power plant, flooding caused by Hurricane Katrina, the Deepwater Horizon oil spill, the Haiti earthquake, and the mortgage derivatives crisis, have renewed interest in the concept of resilience, especially as it relates to complex systems vulnerable to multiple or cascading failures. Although the meaning of resilience is contested in different contexts, in general resilience is understood to mean the capacity to adapt to changing conditions without catastrophic loss of form or function. In the context of engineering systems, this has sometimes been interpreted as the probability that system conditions might exceed an irrevocable tipping point. However, we argue that this approach improperly conflates resilience and risk perspectives by expressing resilience exclusively in risk terms. In contrast, we describe resilience as an emergent property of what an engineering system does, rather than a static property the system has. Therefore, resilience cannot be measured at the systems scale solely from examination of component parts. Instead, resilience is better understood as the outcome of a recursive process that includes: sensing, anticipation, learning, and adaptation. In this approach, resilience analysis can be understood as differentiable from, but complementary to, risk analysis, with important implications for the adaptive management of complex, coupled engineering systems. Management of the 2011 flooding in the Mississippi River Basin is discussed as an example of the successes and challenges of resilience-based management of complex natural systems that have been extensively altered by engineered structures.

7.
J Contam Hydrol ; 144(1): 122-37, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23247401

RESUMEN

Mass depletion-mass flux relationships usually applied to a groundwater plume were established at field scale for groundwater pumped from within the source zone of a dense non-aqueous phase liquid (DNAPL). These were used as part of multiple lines of evidence in establishing the DNAPL source mass and architecture. Simplified source mass-dissolved concentration models including those described by exponential, power, and error functions as well as a rational mass equation based on the equilibrium stream tube approach were fitted to data from 285 days of source zone pumping (SZP) from a single well which removed 152 kg of dissolved organics from a multi-component, reactive brominated solvent DNAPL. The total molar concentration of the source compound, tetrabromoethane and its daughter products was used as a single measure of contaminant concentration to relate to source mass. A partitioning inter-well tracer test (PITT) conducted prior to the SZP provided estimates of groundwater travel times, enabling parameterisation of the models. After accounting for capture of the down-gradient dissolved plume, all models provided a good fit to the observed data. It was shown that differentiation between models would only emerge after appreciably more pumping from the source zone. The model fits were not particularly sensitive to the exponent parameters and variance of groundwater travel time. In addition, the multi-component nature of the DNAPL did not seem to affect the utility of the models for the period examined. Estimates of the DNAPL mass prior to the start of SZP from the models were greatest where the log of the variance of travel time was used explicitly in the source depletion models (mean 295kg) compared to where the associated power exponent and variance was fitted freely (mean 258 kg). The estimates of source mass were close to that of 220kg determined from the PITT. In addition to the PITT, multi-level groundwater sampling from within the source zone provided important supporting information for developing the conceptual model of the source zone. It is concluded that SZP may be an effective and relatively simple means for characterising DNAPL source zones.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Halogenación , Modelos Químicos , Factores de Tiempo , Contaminantes Químicos del Agua/química , Australia Occidental
8.
Artículo en Inglés | MEDLINE | ID: mdl-19184708

RESUMEN

Surfactant-enhanced air sparging (SEAS) was evaluated in this laboratory-scale study to assess: (i) the removal efficiency of volatile contaminant from an aquifer model contrasted to conventional air sparging; and (ii) the effect of mass removal of dense non-aqueous phase liquid (DNAPL) during air sparging on the changes in aqueous flux of dissolved DNAPL. We conducted sparging experiments to remove perchloroethene (PCE) sources from laboratory flow chambers packed with sand. PCE was emplaced in rectangular zones at three locations within the flow chamber. The resident water was supplemented with the anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), to reduce the surface tension of water, and then sparged with nitrogen gas at a constant flow rate of 0.12 L/min. It was found that SEAS was significantly more efficient than conventional air sparging for removing PCE. For SEAS, about 78% and 75% of total PCE mass was depleted from the flow chamber at a surface tension of 52.2 dynes/cm (350 mg/L SDBS) and 63.1 dynes/cm (150 mg/L SDBS), respectively, whereas only 38% was removed at 72.5 dyne/cm (no SDBS added). Before and after sparging, PCE mass flux in the aqueous phase during steady water flow through the chamber was measured in the flow chambers. Post-SEAS PCE fluxes were reduced, but not in direct proportion to the reduction in PCE mass.


Asunto(s)
Dióxido de Silicio , Tensoactivos/química , Tetracloroetileno/química , Tensión Superficial
9.
J Contam Hydrol ; 95(3-4): 93-109, 2008 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-17905471

RESUMEN

We investigated, using model simulations, the changes occurring in the distribution of dense non-aqueous phase liquid (DNAPL) mass (Sn) within the source zone during depletion through dissolution, and the resulting changes in the contaminant flux distribution (J) at the source control plane (CP). Two numerical codes (ISCO3D and T2VOC) were used to simulate selected scenarios of DNAPL dissolution and transport in three-dimensional, heterogeneous, spatially correlated, random permeability fields with emplaced sources. Data from the model simulations were interpreted based on population statistics (mean, standard deviation, coefficient of variation) and spatial statistics (centroid, second moments, variograms). The mean and standard deviation of the Sn and J distributions decreased with source mass depletion by dissolution. The decrease in mean and standard deviation was proportional for the J distribution resulting in a constant coefficient of variation (CV), while for the Sn distribution, the mean decreased faster than the standard deviation. The spatial distributions exhibited similar behavior as the population distribution, i.e., the CP flux distribution was more stable (defined by temporally constant second moments and range of variograms) than the Sn distribution. These observations appeared to be independent of the heterogeneity of the permeability (k) field (variance of the log permeability field=1 and 2.45), correlation structure (positive vs. negative correlation between the k and Sn domains) and the DNAPL dissolution model (equilibrium vs. rate-limited), for the cases studied. Analysis of data from a flux monitoring field study (Hill Air Force Base, Utah) at a DNAPL source CP before and after source remediation also revealed temporal invariance of the contaminant flux distribution. These modeling and field observations suggest that the temporal evolution of the contaminant flux distribution can be estimated if the initial distribution is known. However, the findings are preliminary and broader implications to sampling strategies for remediation performance assessment need to be evaluated in additional modeling and experimental studies.


Asunto(s)
Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Simulación por Computador , Contaminación del Agua/prevención & control
10.
J Contam Hydrol ; 92(3-4): 208-29, 2007 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-17316893

RESUMEN

We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of the surfactant-modified GACs for measuring fluxes of other anions of environmental interest is discussed.


Asunto(s)
Aniones/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , Adsorción , Aniones/análisis , Carbón Orgánico/análisis , Carbón Orgánico/química , Cromatos/análisis , Cromatos/química , Cinética , Oxígeno/química , Percloratos/análisis , Percloratos/química , Ácido Selénico , Compuestos de Selenio/análisis , Compuestos de Selenio/química , Contaminantes Químicos del Agua/química , Contaminación del Agua/prevención & control
11.
Environ Sci Technol ; 40(20): 6392-7, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17120570

RESUMEN

A new configuration of the passive fluxmeter (PFM) is presented that provides for simultaneous measurements of both the magnitude and the direction of ambient groundwater specific discharge qo and Cr(VI) mass flux J(Cr). The PFM is configured as a cylindrical unit with an interior divided into a center section and three outer sectors, each packed with a granular anion exchange resin having high sorption capacity for the Cr(VI) oxyanions CrO4(2-) and HCrO4-. The sorbent in the center section is preloaded with benzoate as the "resident" tracer. Laboratory experiments were conducted in which PFMs were placed in porous packed bed columns, through which was passed a measured volume of synthetic groundwater containing Cr(VI). During the deployment period, some of the resident tracer is depleted while the Cr(VI) is sorbed. The resin was then removed from the four sectors separately and extracted to determine the "captured" mass of Cr(VI) and the residual mass of the resident tracer in each. Cumulative specific discharge, q0t, values were assessed using the residual mass of benzoate retained in the center section. The direction of this discharge theta was ascertained from the mass distribution of benzoate intercepted and retained in the outer three sections of the PFM. Cumulative chromium fluxes, J(Cr)t, were quantified using the total Cr(VI) mass intercepted and retained on the PFM. Experiments produced an average measurement error for direction theta of 3 degrees +/- 14 degrees, while the average measurement errors for q0 and J(Cr) were, respectively, -8% +/- 15% and -12% +/- 23%. Results demonstrate the potential utility of the new PFM configuration for characterizing groundwater and contaminant fluxes.


Asunto(s)
Cromo/análisis , Monitoreo del Ambiente/métodos , Agua/análisis , Monitoreo del Ambiente/instrumentación , Modelos Teóricos , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
12.
J Contam Hydrol ; 86(1-2): 105-27, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16581154

RESUMEN

Groundwater and contaminant fluxes were measured, using the passive flux meter (PFM) technique, in wells along a longitudinal transect passing approximately through the centerline of a trichloroethylene (TCE) plume at a former manufacturing plant located in the Midwestern US. Two distinct zones of hydraulic conductivity were identified from the measured groundwater fluxes; a 6-m-thick upper zone ( approximately 7 m to 13 m below the ground surface or bgs) with a geometric mean Darcy flux (q(0)) of 2 cm/day, and a lower zone ( approximately 13 m to 16.5m bgs) with a q(0) approximately 15 cm/day; this important hydrogeologic feature significantly impacts any remediation technology used at the site. The flux-averaged TCE concentrations estimated from the PFM results compared well with existing groundwater monitoring data. It was estimated that at least 800 kg of TCE was present in the source zone. The TCE mass discharge across the source control plane (85 m x 38 m) was used to estimate the "source strength" ( approximately 365 g/day), while mass discharges across multiple down-gradient control planes were used to estimate the plume-averaged, TCE degradation rate constant (0.52 year(-1)). This is close to the rate estimated using the conventional centerline approach (0.78 year(-1)). The mass discharge approach provides a more robust and representative estimate than the centerline approach since the latter uses only data from wells along the plume centerline while the former uses all wells in the plume.


Asunto(s)
Residuos Industriales/análisis , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis , Tricloroetileno/química
13.
J Contam Hydrol ; 81(1-4): 125-47, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16213060

RESUMEN

Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.


Asunto(s)
Simulación por Computador , Modelos Teóricos , Movimientos del Agua , Procesos Estocásticos
14.
J Contam Hydrol ; 81(1-4): 148-66, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16185785

RESUMEN

A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hydraulic "structure" and non-aqueous phase liquid (NAPL) "architecture" have been described in a companion paper (Enfield, C.G., Wood, A.L., Espinoza, F.P., Brooks, M.C., Annable, M., Rao, P.S.C., this issue. Design of aquifer remediation systems: (1) describing hydraulic structure and NAPL architecture using tracers. J. Contam. Hydrol.). The previously defined functions were used along with the properties of the remedial fluids to describe remedial performance. There are two objectives for this paper. First, is to show that a simple analytic element model can be used to give a reasonable estimate of system performance. This is accomplished by comparing forecast performance to observed performance. The second objective is to display the model output in terms of change in mass flux and mass removal as a function of pore volumes of remedial fluid injected. The modelling results suggest that short term benefits are obtained and related to mass reduction at the sites where the model was tested.


Asunto(s)
Agua Dulce , Modelos Teóricos , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes del Suelo , Solventes , Procesos Estocásticos , Movimientos del Agua
15.
J Contam Hydrol ; 81(1-4): 34-62, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16139392

RESUMEN

The methods presented in this work provide a potential tool for characterizing contaminant source zones in terms of mass flux. The problem was conceptualized by considering contaminant transport through a vertical "flux plane" located between a source zone and a downgradient region where contaminant concentrations were measured. The goal was to develop a robust method capable of providing a statement of the magnitude and uncertainty associated with estimated contaminant mass flux values. In order to estimate the magnitude and transverse spatial distribution of mass flux through a plane, the problem was considered in an optimization framework. Two numerical optimization techniques were applied, simulated annealing (SA) and minimum relative entropy (MRE). The capabilities of the flux plane model and the numerical solution techniques were evaluated using data from a numerically generated test problem and a nonreactive tracer experiment performed in a three-dimensional aquifer model. Results demonstrate that SA is more robust and converges more quickly than MRE. However, SA is not capable of providing an estimate of the uncertainty associated with the simulated flux values. In contrast, MRE is not as robust as SA, but once in the neighborhood of the optimal solution, it is quite effective as a tool for inferring mass flux probability density functions, expected flux values, and confidence limits. A hybrid (SA-MRE) solution technique was developed in order to take advantage of the robust solution capabilities of SA and the uncertainty estimation capabilities of MRE. The coupled technique provided probability density functions and confidence intervals that would not have been available from an independent SA algorithm and they were obtained more efficiently than if provided by an independent MRE algorithm.


Asunto(s)
Algoritmos , Monitoreo del Ambiente , Agua Dulce/análisis , Modelos Teóricos , Contaminantes del Agua/análisis , Simulación por Computador
16.
J Contam Hydrol ; 75(3-4): 155-81, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15610899

RESUMEN

This paper introduces a new direct method for measuring water and contaminant fluxes in porous media. The method uses a passive flux meter (PFM), which is essentially a self-contained permeable unit properly sized to fit tightly in a screened well or boring. The meter is designed to accommodate a mixed medium of hydrophobic and/or hydrophilic permeable sorbents, which retain dissolved organic/inorganic contaminants present in the groundwater flowing passively through the meter. The contaminant mass intercepted and retained on the sorbent is used to quantify cumulative contaminant mass flux. The sorptive matrix is also impregnated with known amounts of one or more water soluble 'resident tracers'. These tracers are displaced from the sorbent at rates proportional to the groundwater flux; hence, in the current meter design, the resident tracers are used to quantify cumulative groundwater flux. Theory is presented and quantitative tools are developed to interpret the water flux from tracers possessing linear and nonlinear elution profiles. The same theory is extended to derive functional relationships useful for quantifying cumulative contaminant mass flux. To validate theory and demonstrate the passive flux meter, results of multiple box-aquifer experiments are presented and discussed. From these experiments, it is seen that accurate water flux measurements are obtained when the tracer used in calculations resides in the meter at levels representing 20 to 70 percent of the initial condition. 2,4-Dimethyl-3-pentanol (DMP) is used as a surrogate groundwater contaminant in the box aquifer experiments. Cumulative DMP fluxes are measured within 5% of known fluxes. The accuracy of these estimates generally increases with the total volume of water intercepted.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Dulce/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Monitoreo del Ambiente/instrumentación , Agua Dulce/química , Indicadores y Reactivos , Modelos Teóricos , Porosidad , Reproducibilidad de los Resultados , Movimientos del Agua
17.
Environ Sci Technol ; 38(5): 1460-70, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15046348

RESUMEN

Natural and synthetic analogues of steroid hormones and their metabolites have emerged as contaminants of concern. Characterizing sorption and degradation processes is essential to assess the environmental distribution, persistence, and ecological significance of steroid hormones in terrestrial and aquatic systems. We examined the fate and transport of testosterone and 17beta-estradiol by conducting a series of fast-flow-velocity transport experiments under pulse-type and flow-interruption boundary conditions in columns packed with a surface soil, freshwater sediment, and two sands. Flow-interruption experiments provided independent estimates of degradation coefficients for the parent hormones and their metabolites, while pulse-input type experiments were used to identify transport mechanisms for hormones by employing forward modeling approaches. Estimated degradation rate coefficients (k) for the hormones from flow-interruption experiments ranged from 0.003 to 0.015 h(-1) for testosterone and from 0.0003 to 0.075 h(-1) for estradiol, similar to those observed in batch studies. Degradation rate coefficients for the two primary metabolites were 1-2 orders of magnitude larger than those for the parent chemicals. Estimated k values decreased with column life as a result of nutrient depletion. Large sorption by soils of the parent and metabolites (log Koc approximately 2.77-3.69) did not appear to hinder degradation; k values were an order of magnitude smaller than the estimated sorption mass-transfer constants. Differences in hormone breakthrough curves from a single-pulse displacement and those predicted using independently estimated parameters suggest that modeling hormone degradation as a simple first-order kinetic process may be sufficient, but not accurate.


Asunto(s)
Estradiol/metabolismo , Modelos Teóricos , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Testosterona/metabolismo , Contaminantes del Agua/metabolismo , Estradiol/análisis , Cinética , Contaminantes del Suelo/análisis , Testosterona/análisis , Eliminación de Residuos Líquidos , Contaminantes del Agua/análisis
18.
J Hazard Mater ; 96(1): 65-78, 2003 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-12475479

RESUMEN

Remediation of sites contaminated by chlorinated organic compounds is a significant priority in the environmental field. Subsequently, the addition of cosolvent solutions for in situ flushing of contaminated source zones has been successfully field tested. However, the treatment of effluent fluids in such cleanup efforts is an often overlooked component of this technology implementation. The purpose of this research was to evaluate the effectiveness of zero-valent iron (Fe(0)) in treating perchloroethylene (PCE) in an aqueous solution, and how the presence of a cosolvent (ethanol) and modification of the iron surface altered dechlorination. The modified iron surfaces included in this study were nickel-plated iron, acid-treated iron, and untreated iron surfaces. PCE dechlorination in the presence of each of the iron surfaces displayed pseudo first-order kinetics. The highest degradation rate of PCE occurred on the nickel-plated iron surface, 5.83 x 10(-3)h(-1), followed by the acid-treated iron, 4.92 x 10(-3)h(-1), and the untreated iron, 3.34 x 10(-3)h(-1). Dechlorination on each of the surfaces decreased with increasing cosolvent fractions. It was shown that as cosolvent fractions increased, PCE adsorption decreased and resulted in a concomitant decrease in PCE degradation rates.


Asunto(s)
Contaminantes Ambientales/análisis , Hierro/química , Solventes/química , Tetracloroetileno/análisis , Contaminantes del Agua/análisis , Cromatografía Líquida de Alta Presión , Etanol/química , Cinética , Tetracloroetileno/química
19.
J Environ Qual ; 31(6): 1953-62, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12469845

RESUMEN

This study examines the effect of soil organic matter heterogeneity on equilibrium sorption and desorption of phenanthrene, naphthalene, 1,3,5-trichlorobenzene (1,3,5-TCB), and 1,2-dichlorobenzene (1,2-DCB) by soils and sediments. Two estuary sediments, a Pahokee peat (PP; Euic, hyperthermic Lithic Haplosaprist), and two subsamples (base- and acid-treated peat [TP] and acid-treated peat [FP]) of the peat were used as the sorbents. The contents of black carbon particles were quantified with a chemical extraction method. Petrographical examinations revealed the presence of the condensed soil and sediment organic matter (SOM) in Pahokee peat. The Freundlich isotherm model in two different forms was used to fit both sorption and desorption data. The results show that the sorption and desorption isotherms are generally nonlinear and that the apparent sorption-desorption hysteresis is present for phenanthrene and TCB. Detailed analysis of sorption data for the tested sorbent-sorbate systems indicates that black carbon is probably responsible for sorption isotherm nonlinearity for the two sediments, whereas the humic substances and kerogen may play the dominant role in nonlinear sorption by the peat. This investigation suggests that the microporosity of SOM is important for the hydrophobic organic contaminant (HOC) sorption capacity on the peat.


Asunto(s)
Hidrocarburos/química , Contaminantes del Suelo/análisis , Adsorción , Sedimentos Geológicos/química , Hidrocarburos/análisis , Compuestos Orgánicos , Porosidad , Suelo , Solubilidad
20.
Recurso de Internet en Inglés | LIS - Localizador de Información en Salud | ID: lis-340

RESUMEN

It explains how pesticides can move from the area in which they are applied, and shows how this information can be used, along with otherfactors, to select the proper pesticide.


Asunto(s)
Toxicología , Uso de Plaguicidas , Contaminación del Agua , 16209
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...