Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 660: 423-439, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244508

RESUMEN

In this paper, the effect of three monocarboxylic acids on MIL-125 synthesis was systematically investigated and the results were discussed in detail. X-ray diffractometry (XRD) and nitrogen adsorption-desorption curves indicated that small molecule acids (acetic acid, propionic acid and butyric acid) affected the morphology of MIL-125 and induced lamellar pores and structural defects in the crystals. Thermogravimetric measurements confirmed the presence of acid-regulated defective metal-organic frameworks (MOFs). Electrochemical tests and density function theory calculations indicated that acid modulation could change the forbidden bandwidth of the material. The acid modification strategy effectively promoted the transfer of photogenerated electrons and enhanced the adsorption and activation of O2 and H2O molecules, generating reactive radicals. The modified MOFs also showed excellent performance in the removal of mixed toluene and chlorobenzene. The degradation pathways of the mixture were analyzed by in situ infrared (IR) and gas chromatography-mass spectrometry (GC-MS). The mixture was converted to chlorophenolic intermediates in the presence of reactive oxygen species, further decomposed to form ethers and ethanol, and finally formed small molecules such as carbon dioxide and water. A feasible method was provided for the preparation of photocatalysts for the treatment of mixed VOCs.

2.
J Environ Sci (China) ; 134: 21-33, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37673530

RESUMEN

The construction of heterophase junctions by rutile-anatase TiO2 is considered an effective strategy for toluene degradation, but the photogenerated electron utilization is still insufficient. In this study, the formation of type-II heterojunction by the encapsulation of Materials of Institut Lavoisier (MIL-101) by anatase is performed, and then the heterophase junction is further constructed to improve the catalytic performance of the photocatalyst. The enhancement of photocatalytic performance depends on the encapsulation of MIL-101 by anatase, the light absorption capacity of anatase, and the contact area of two heterojunctions. Photogenerated electrons are transferred to oxygen vacancies of anatase and promoting the generation of oxygen-containing radicals. The material certifies the synergistic effect of the heterophase junction and heterojunction design and provides a theoretical basis for application in the degradation of volatile organic compounds.


Asunto(s)
Gases , Oxígeno , Especies Reactivas de Oxígeno , Tolueno
3.
J Colloid Interface Sci ; 636: 55-72, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621129

RESUMEN

Since the environmental hazards of volatile organic compounds (VOCs) are well known, heterogeneous catalysis has become one of the most popular methods to treat VOCs due to its environmental friendliness and simplicity of operation. Although a large number of reports have reviewed the application of catalytic oxidation for the degradation of VOCs, relatively few reports are based on this direction of metal organic frameworks (MOFs) and MOF derivatives. Herein, this paper reviews the recent applications of heterogeneous catalytic technologies in the degradation of VOCs, including photocatalysis, thermal catalysis and other catalytic approaches. The applications of MOFs and their derivatives in VOCs degradation, such as the progress of MOF-derived metal oxides in the treatment of toluene, were highlighted. The mechanisms of VOCs degradation by different catalytic approaches were systematically presented. Finally, we presented the views and directions of VOCs treatment technology development. We hope that this reaction type-oriented review will provide important insights into MOFs and MOF-derived materials for VOCs pollution control.

4.
J Colloid Interface Sci ; 627: 385-397, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35863197

RESUMEN

In this paper, a simple solvothermal synthesis method was proposed for the preparation of metal organic framework/graphene oxide hybrid nanocomposite (UiO-67/GO). A series of UiO-67/GO composites were prepared by varying the addition forms and amounts of GO, and the optimal synthesis conditions were screened. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission Electron Microscope (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS), water contact angles (CA) and thermogravimetric analysis (TGA). The adsorption capacity and the adsorption process of toluene were investigated by dynamic adsorption and adsorption kinetics, respectively. The results indicated that 67/GO-0.5% reached the maximum adsorption capacity (876 mg g-1), which far exceeded the other adsorbents. Kinetic model and the Weber-Morris model correlated satisfactorily to the experimental data. The improved adsorption performance was attributed to GO, which enhanced π-π interaction, promoted defect generation and provided more adsorption sites. Finally, the excellent regeneration performance of the adsorbent was verified by temperature programmed desorption (TPD) and cyclic adsorption-desorption experiments. Moreover, the adsorption mechanism was further revealed. Combined with the related adsorption experiments and the density functional theory (DFT) analysis, the efficient removal of toluene by UiO-67/GO was attributed to the cooperation of defects, π-π interaction and hydrogen bonding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...