Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Am J Med Genet A ; : e63638, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779990

RESUMEN

Myhre syndrome is an increasingly diagnosed ultrarare condition caused by recurrent germline autosomal dominant de novo variants in SMAD4. Detailed multispecialty evaluations performed at the Massachusetts General Hospital (MGH) Myhre Syndrome Clinic (2016-2023) and by collaborating specialists have facilitated deep phenotyping, genotyping and natural history analysis. Of 47 patients (four previously reported), most (81%) patients returned to MGH at least once. For patients followed for at least 5 years, symptom progression was observed in all. 55% were female and 9% were older than 18 years at diagnosis. Pathogenic variants in SMAD4 involved protein residues p.Ile500Val (49%), p.Ile500Thr (11%), p.Ile500Leu (2%), and p.Arg496Cys (38%). Individuals with the SMAD4 variant p.Arg496Cys were less likely to have hearing loss, growth restriction, and aortic hypoplasia than the other variant groups. Those with the p.Ile500Thr variant had moderate/severe aortic hypoplasia in three patients (60%), however, the small number (n = 5) prevented statistical comparison with the other variants. Two deaths reported in this cohort involved complex cardiovascular disease and airway stenosis, respectively. We provide a foundation for ongoing natural history studies and emphasize the need for evidence-based guidelines in anticipation of disease-specific therapies.

3.
AJNR Am J Neuroradiol ; 45(4): 379-385, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453413

RESUMEN

BACKGROUND AND PURPOSE: The use of MR imaging in emergency settings has been limited by availability, long scan times, and sensitivity to motion. This study assessed the diagnostic performance of an ultrafast brain MR imaging protocol for evaluation of acute intracranial pathology in the emergency department and inpatient settings. MATERIALS AND METHODS: Sixty-six adult patients who underwent brain MR imaging in the emergency department and inpatient settings were included in the study. All patients underwent both the reference and the ultrafast brain MR protocols. Both brain MR imaging protocols consisted of T1-weighted, T2/T2*-weighted, FLAIR, and DWI sequences. The ultrafast MR images were reconstructed by using a machine-learning assisted framework. All images were reviewed by 2 blinded neuroradiologists. RESULTS: The average acquisition time was 2.1 minutes for the ultrafast brain MR protocol and 10 minutes for the reference brain MR protocol. There was 98.5% agreement on the main clinical diagnosis between the 2 protocols. In head-to-head comparison, the reference protocol was preferred in terms of image noise and geometric distortion (P < .05 for both). The ultrafast ms-EPI protocol was preferred over the reference protocol in terms of reduced motion artifacts (P < .01). Overall diagnostic quality was not significantly different between the 2 protocols (P > .05). CONCLUSIONS: The ultrafast brain MR imaging protocol provides high accuracy for evaluating acute pathology while only requiring a fraction of the scan time. Although there was greater image noise and geometric distortion on the ultrafast brain MR protocol images, there was significant reduction in motion artifacts with similar overall diagnostic quality between the 2 protocols.


Asunto(s)
Encefalopatías , Pacientes Internos , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encefalopatías/diagnóstico por imagen , Encefalopatías/patología , Tiempo
4.
AJR Am J Roentgenol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477525

RESUMEN

This AJR Expert Panel Narrative explores the current status of advanced MRI and PET techniques for the post-therapeutic response assessment of high-grade adult-type gliomas, focusing on ongoing clinical controversies in current practice. Discussed techniques that complement conventional MRI and aid the differentiation of recurrent tumor from post-treatment effects include DWI and diffusion tensor imaging; perfusion MRI techniques including dynamic susceptibility contrast (DSC), dynamic contrast-enhanced MRI, and arterial spin labeling; MR spectroscopy including assessment of 2-hydroxyglutarate (2HG) concentration; glucose- and amino acid (AA)-based PET; and amide proton transfer imaging. Updated criteria for Response Assessment in Neuro-Oncology are presented. Given the abundant supporting clinical evidence, the panel supports a recommendation that routine response assessment after HGG treatment should include perfusion MRI, particularly given the development of a consensus recommended DSC-MRI protocol. Although published studies support 2HG MRS and AA PET, these techniques' widespread adoption will likely require increased availability (for 2HG MRS) or increased insurance funding in the United States (for AA PET). The article concludes with a series of consensus opinions from the author panel, centered on the clinical integration of the advanced imaging techniques into posttreatment surveillance protocols.

5.
Neuroradiol J ; 37(3): 323-331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38195418

RESUMEN

BACKGROUND AND PURPOSE: Deep learning (DL) accelerated MR techniques have emerged as a promising approach to accelerate routine MR exams. While prior studies explored DL acceleration for specific lumbar MRI sequences, a gap remains in comprehending the impact of a fully DL-based MRI protocol on scan time and diagnostic quality for routine lumbar spine MRI. To address this, we assessed the image quality and diagnostic performance of a DL-accelerated lumbar spine MRI protocol in comparison to a conventional protocol. METHODS: We prospectively evaluated 36 consecutive outpatients undergoing non-contrast enhanced lumbar spine MRIs. Both protocols included sagittal T1, T2, STIR, and axial T2-weighted images. Two blinded neuroradiologists independently reviewed images for foraminal stenosis, spinal canal stenosis, nerve root compression, and facet arthropathy. Grading comparison employed the Wilcoxon signed rank test. For the head-to-head comparison, a 5-point Likert scale to assess image quality, considering artifacts, signal-to-noise ratio (SNR), anatomical structure visualization, and overall diagnostic quality. We applied a 15% noninferiority margin to determine whether the DL-accelerated protocol was noninferior. RESULTS: No significant differences existed between protocols when evaluating foraminal and spinal canal stenosis, nerve compression, or facet arthropathy (all p > .05). The DL-spine protocol was noninferior for overall diagnostic quality and visualization of the cord, CSF, intervertebral disc, and nerve roots. However, it exhibited reduced SNR and increased artifact perception. Interobserver reproducibility ranged from moderate to substantial (κ = 0.50-0.76). CONCLUSION: Our study indicates that DL reconstruction in spine imaging effectively reduces acquisition times while maintaining comparable diagnostic quality to conventional MRI.


Asunto(s)
Aprendizaje Profundo , Vértebras Lumbares , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vértebras Lumbares/diagnóstico por imagen , Femenino , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Relación Señal-Ruido , Estenosis Espinal/diagnóstico por imagen , Adulto , Enfermedades de la Columna Vertebral/diagnóstico por imagen
6.
Expert Rev Neurother ; 23(12): 1311-1324, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877290

RESUMEN

INTRODUCTION: Congenital and developmental intracranial cysts represent a large heterogenous group with varied presentations and etiologies. They can range from normal variants to pathologic lesions often associated with known congenital syndromes or acquired insults. While some are incidentally found, others are symptomatic or may become symptomatic over time. The preferred type of neuroimaging for timely diagnosis helps determine appropriate management and treatment, if indicated. AREAS COVERED: In this narrative review article, authors present a comprehensive description of developmental cystic lesions. Imaging descriptions are provided for each type of cystic lesion as well as several representative images. EXPERT OPINION: As advanced neuroimaging techniques become more ubiquitous in clinical use, more light may be shed on the natural history of certain intracranial cystic lesions throughout the lifespan. This includes prenatal imaging for early identification and prognostication to surveillance imaging into advanced age to ascertain associations of certain cystic lesions with age-related cognitive dysfunction.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Embarazo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen
7.
Eur Radiol Exp ; 7(1): 34, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394534

RESUMEN

Flow-related artifacts have been observed in highly accelerated T1-weighted contrast-enhanced wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid gradient-echo (MPRAGE) imaging and can lead to diagnostic uncertainty. We developed an optimized flow-mitigated Wave-CAIPI MPRAGE acquisition protocol to reduce these artifacts through testing in a custom-built flow phantom. In the phantom experiment, maximal flow artifact reduction was achieved with the combination of flow compensation gradients and radial reordered k-space acquisition and was included in the optimized sequence. Clinical evaluation of the optimized MPRAGE sequence was performed in 64 adult patients, who all underwent contrast-enhanced Wave-CAIPI MPRAGE imaging without flow-compensation and with optimized flow-compensation parameters. All images were evaluated for the presence of flow-related artifacts, signal-to-noise ratio (SNR), gray-white matter contrast, enhancing lesion contrast, and image sharpness on a 3-point Likert scale. In the 64 cases, the optimized flow mitigation protocol reduced flow-related artifacts in 89% and 94% of the cases for raters 1 and 2, respectively. SNR, gray-white matter contrast, enhancing lesion contrast, and image sharpness were rated as equivalent for standard and flow-mitigated Wave-CAIPI MPRAGE in all subjects. The optimized flow mitigation protocol successfully reduced the presence of flow-related artifacts in the majority of cases.Relevance statementAs accelerated MRI using novel encoding schemes become increasingly adopted in clinical practice, our work highlights the need to recognize and develop strategies to minimize the presence of unexpected artifacts and reduction in image quality as potential compromises to achieving short scan times.Key points• Flow-mitigation technique led to an 89-94% decrease in flow-related artifacts.• Image quality, signal-to-noise ratio, enhancing lesion conspicuity, and image sharpness were preserved with the flow mitigation technique.• Flow mitigation reduced diagnostic uncertainty in cases where flow-related artifacts mimicked enhancing lesions.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido , Fantasmas de Imagen , Artefactos
9.
Expert Rev Neurother ; 23(3): 237-247, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897002

RESUMEN

INTRODUCTION: Intracranial cysts and cyst-like intracranial lesions are common findings on neuroimaging with a wide range of etiologies. Oftentimes, cystic intracranial lesions are benign but in some parts of the world, infectious etiologies for cystic lesions in the brain are quite common. Prompt identification of the cause of a cystic brain lesion is paramount in determining appropriate treatment if indicated. AREAS COVERED: In this narrative review article, the authors present a comprehensive description of cystic lesions of infectious or inflammatory etiology. Imaging descriptions are provided for each type of cystic lesion as well as several representative images. EXPERT OPINION: The majority of diagnoses may be identified by CT and MR imaging. Yet some pathologies are still unable to be determined through standard imaging techniques and biopsy remains necessary for definitive diagnosis in some cases. Advanced neuroimaging such as metabolic/nuclear imaging and advanced MR hold promise with improved diagnostics but are not often available in geographic regions where these illnesses are endemic.


Asunto(s)
Neoplasias Encefálicas , Quistes , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Quistes/diagnóstico por imagen , Quistes/patología , Neoplasias Encefálicas/patología , Neuroimagen , Diagnóstico Diferencial
10.
PLoS One ; 18(3): e0281900, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36913348

RESUMEN

Machine learning (ML) algorithms to detect critical findings on head CTs may expedite patient management. Most ML algorithms for diagnostic imaging analysis utilize dichotomous classifications to determine whether a specific abnormality is present. However, imaging findings may be indeterminate, and algorithmic inferences may have substantial uncertainty. We incorporated awareness of uncertainty into an ML algorithm that detects intracranial hemorrhage or other urgent intracranial abnormalities and evaluated prospectively identified, 1000 consecutive noncontrast head CTs assigned to Emergency Department Neuroradiology for interpretation. The algorithm classified the scans into high (IC+) and low (IC-) probabilities for intracranial hemorrhage or other urgent abnormalities. All other cases were designated as No Prediction (NP) by the algorithm. The positive predictive value for IC+ cases (N = 103) was 0.91 (CI: 0.84-0.96), and the negative predictive value for IC- cases (N = 729) was 0.94 (0.91-0.96). Admission, neurosurgical intervention, and 30-day mortality rates for IC+ was 75% (63-84), 35% (24-47), and 10% (4-20), compared to 43% (40-47), 4% (3-6), and 3% (2-5) for IC-. There were 168 NP cases, of which 32% had intracranial hemorrhage or other urgent abnormalities, 31% had artifacts and postoperative changes, and 29% had no abnormalities. An ML algorithm incorporating uncertainty classified most head CTs into clinically relevant groups with high predictive values and may help accelerate the management of patients with intracranial hemorrhage or other urgent intracranial abnormalities.


Asunto(s)
Aprendizaje Profundo , Humanos , Incertidumbre , Tomografía Computarizada por Rayos X/métodos , Hemorragias Intracraneales/diagnóstico por imagen , Algoritmos , Estudios Retrospectivos
11.
J Cutan Pathol ; 50(7): 653-660, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36700349

RESUMEN

BACKGROUND: Encephaloceles are neural tube defects characterized by herniation of meninges, neural tissue and cerebrospinal fluid, while atretic cephaloceles denote a rudimentary connection to the intracranial space with absence of herniated neural tissue and represent an infrequent dermatopathologic diagnosis. Limited reports of these entities confound the challenge in their histopathologic distinction. Accurate classification is important given associated anomalies and neurologic manifestations that impact prognosis. METHODS: We describe the clinicopathological and immunohistochemical [glial fibrillary acidic protein (GFAP), S100, epithelial membrane antigen (EMA), and somatostatin receptor subtype 2A (SSTR2A)] features in a retrospective series encountered at a single institution between 1994 and 2020. RESULTS: We identified 13 cases classified as atretic cephalocele (n = 11) and encephalocele (n = 2). Hamartomatous changes and multinucleated cells were unique to atretic cephaloceles while myxoid areas were unique to encephaloceles. At least focal staining for SSTRA was seen in all atretic cephaloceles with the majority (87.5%) staining for EMA; negative staining for GFAP and S100 confirmed absence of neural tissue. Encephaloceles were GFAP and S100 positive, and negative for SSTR2 and EMA. Atretic cephaloceles had a favorable prognosis compared to encephaloceles, with severe morbidity present in both encephalocele cases. CONCLUSION: Our study raises awareness of atretic cephalocele and encephalocele among dermatopathologists and reveals a mutually exclusive immunophenotype that facilitates their distinction for prognostication and management.


Asunto(s)
Encefalocele , Meninges , Humanos , Encefalocele/patología , Estudios Retrospectivos , Meninges/patología , Pronóstico
12.
Eur Radiol ; 33(4): 2905-2915, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36460923

RESUMEN

OBJECTIVES: High-resolution post-contrast T1-weighted imaging is a workhorse sequence in the evaluation of neurological disorders. The T1-MPRAGE sequence has been widely adopted for the visualization of enhancing pathology in the brain. However, this three-dimensional (3D) acquisition is lengthy and prone to motion artifact, which often compromises diagnostic quality. The goal of this study was to compare a highly accelerated wave-controlled aliasing in parallel imaging (CAIPI) post-contrast 3D T1-MPRAGE sequence (Wave-T1-MPRAGE) with the standard 3D T1-MPRAGE sequence for visualizing enhancing lesions in brain imaging at 3 T. METHODS: This study included 80 patients undergoing contrast-enhanced brain MRI. The participants were scanned with a standard post-contrast T1-MPRAGE sequence (acceleration factor [R] = 2 using GRAPPA parallel imaging technique, acquisition time [TA] = 5 min 18 s) and a prototype post-contrast Wave-T1-MPRAGE sequence (R = 4, TA = 2 min 32 s). Two neuroradiologists performed a head-to-head evaluation of both sequences and rated the visualization of enhancement, sharpness, noise, motion artifacts, and overall diagnostic quality. A 15% noninferiority margin was used to test whether post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE. Inter-rater and intra-rater agreement were calculated. Quantitative assessment of CNR/SNR was performed. RESULTS: Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE for delineating enhancing lesions with unanimous agreement in all cases between raters. Wave-T1-MPRAGE was noninferior in the perception of noise (p < 0.001), motion artifact (p < 0.001), and overall diagnostic quality (p < 0.001). CONCLUSION: High-accelerated post-contrast Wave-T1-MPRAGE enabled a two-fold reduction in acquisition time compared to the standard sequence with comparable performance for visualization of enhancing pathology and equivalent perception of noise, motion artifacts and overall diagnostic quality without loss of clinically important information. KEY POINTS: • Post-contrast wave-controlled aliasing in parallel imaging (CAIPI) T1-MPRAGE accelerated the acquisition of three-dimensional (3D) high-resolution post-contrast images by more than two-fold. • Post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE with unanimous agreement between reviewers (100% in 80 cases) for the visualization of intracranial enhancing lesions. • Wave-T1-MPRAGE was equivalent to the standard sequence in the perception of noise in 94% (75 of 80) of cases and was preferred in 16% (13 of 80) of cases for decreased motion artifact.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Artefactos , Movimiento (Física)
13.
Acad Radiol ; 30(2): 341-348, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34635436

RESUMEN

INTRODUCTION: Clinical validation studies have demonstrated the ability of accelerated MRI sequences to decrease acquisition time and motion artifact while preserving image quality. The operational benefits, however, have been less explored. Here, we report our initial clinical experience in implementing fast MRI techniques for outpatient brain imaging during the COVID-19 pandemic. METHODS: Aggregate acquisition times were extracted from the medical record on consecutive imaging examinations performed during matched pre-implementation (7/1/2019-12/31/2019) and post-implementation periods (7/1/2020-12/31/2020). Expected acquisition time reduction for each MRI protocol was calculated through manual collection of acquisition times for the conventional and accelerated sequences performed during the pre- and post-implementation periods. Aggregate and expected acquisition times were compared for the five most frequently performed brain MRI protocols: brain without contrast (BR-), brain with and without contrast (BR+), multiple sclerosis (MS), memory loss (MML), and epilepsy (EPL). RESULTS: The expected time reductions for BR-, BR+, MS, MML, and EPL protocols were 6.6 min, 11.9 min, 14 min, 10.8 min, and 14.1 min, respectively. The overall median aggregate acquisition time was 31 [25, 36] min for the pre-implementation period and 18 [15, 22] min for the post-implementation period, with a difference of 13 min (42%). The median acquisition time was reduced by 4 min (25%) for BR-, 14.0 min (44%) for BR+, 14 min (38%) for MS, 11 min (52%) for MML, and 16 min (35%) for EPL. CONCLUSION: The implementation of fast brain MRI sequences significantly reduced the acquisition times for the most commonly performed outpatient brain MRI protocols.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Humanos , Pacientes Ambulatorios , Pandemias , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen
14.
Brain Sci ; 12(12)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36552169

RESUMEN

Functional magnetic resonance imaging (fMRI) has shown elevations in the blood-oxygen-level-dependent (BOLD) signal associated with, but insensitive for, seizure. Rather than evaluating absolute BOLD signal elevations, assessing rhythmic oscillations in the BOLD signal with fMRI may improve the accuracy of seizure mapping. We report a case of a patient with non-convulsive, right hemispheric seizures who underwent fMRI. Unbiased processing methods revealed a map of rhythmically oscillating BOLD signal over the cortical region affected by seizure, and synchronous BOLD signal in the contralateral cerebellum. High-resolution fMRI may help identify the spatial topography of seizure and provide insights into seizure physiology.

15.
Neurooncol Adv ; 4(1): vdac128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071927

RESUMEN

Background: There is a need to establish biomarkers that distinguish between pseudoprogression (PsP) and true tumor progression in patients with glioblastoma (GBM) treated with chemoradiation. Methods: We analyzed magnetic resonance spectroscopic imaging (MRSI) and dynamic susceptibility contrast (DSC) MR perfusion data in patients with GBM with PsP or disease progression after chemoradiation. MRSI metabolites of interest included intratumoral choline (Cho), myo-inositol (mI), glutamate + glutamine (Glx), lactate (Lac), and creatine on the contralateral hemisphere (c-Cr). Student T-tests and area under the ROC curve analyses were used to detect group differences in metabolic ratios and their ability to predict clinical status, respectively. Results: 28 subjects (63 ± 9 years, 19 men) were evaluated. Subjects with true progression (n = 20) had decreased enhancing region mI/c-Cr (P = .011), a marker for more aggressive tumors, compared to those with PsP, which predicted tumor progression (AUC: 0.84 [0.76, 0.92]). Those with true progression had elevated Lac/Glx (P = .0009), a proxy of the Warburg effect, compared to those with PsP which predicted tumor progression (AUC: 0.84 [0.75, 0.92]). Cho/c-Cr did not distinguish between PsP and true tumor progression. Despite rCBV (AUC: 0.70 [0.60, 0.80]) and rCBF (AUC: 0.75 [0.65, 0.84]) being individually predictive of tumor response, they added no additional predictive value when combined with MRSI metabolic markers. Conclusions: Incorporating enhancing lesion MRSI measures of mI/c-Cr and Lac/Glx into brain tumor imaging protocols can distinguish between PsP and true progression and inform patient management decisions.

17.
Magn Reson Imaging Clin N Am ; 30(3): 565-582, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35995480

RESUMEN

Fast MRI and portable MRI are emerging as promising technologies to improve the speed, efficiency, and availability of MR imaging. Fast MRI methods are increasingly being adopted to create screening protocols for the diagnosis and management of acute pathology in the emergency department. Faster imaging can facilitate timely diagnosis, reduce motion artifacts, and improve departmental MR operations. Point-of-care and portable MRI are emerging technologies that require radiologists to reenvision the role of MRI as a tool with greater accessibility, fewer siting constraints, and the ability to provide valuable diagnostic information at the bedside. Recently introduced commercially available pulse sequences and new MRI scanners are bringing these technologies closer to the patient's clinical setting, and we expect their use to only increase over the coming decade. This article provides an overview of these emerging technologies for emergency radiologists.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos
18.
Eur Radiol ; 32(10): 7128-7135, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35925387

RESUMEN

OBJECTIVES: Wave-CAIPI (Controlled Aliasing in Parallel Imaging) enables dramatic reduction in acquisition time of 3D MRI sequences such as 3D susceptibility-weighted imaging (SWI) but has not been clinically evaluated at 1.5 T. We sought to compare highly accelerated Wave-CAIPI SWI (Wave-SWI) with two alternative standard sequences, conventional three-dimensional SWI and two-dimensional T2*-weighted Gradient-Echo (T2*w-GRE), in patients undergoing routine brain MRI at 1.5 T. METHODS: In this study, 172 patients undergoing 1.5 T brain MRI were scanned with a more commonly used susceptibility sequence (standard SWI or T2*w-GRE) and a highly accelerated Wave-SWI sequence. Two radiologists blinded to the acquisition technique scored each sequence for visualization of pathology, motion and signal dropout artifacts, image noise, visualization of normal anatomy (vessels and basal ganglia mineralization), and overall diagnostic quality. Superiority testing was performed to compare Wave-SWI to T2*w-GRE, and non-inferiority testing with 15% margin was performed to compare Wave-SWI to standard SWI. RESULTS: Wave-SWI performed superior in terms of visualization of pathology, signal dropout artifacts, visualization of normal anatomy, and overall image quality when compared to T2*w-GRE (all p < 0.001). Wave-SWI was non-inferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall image quality (all p < 0.001). Wave-SWI was superior to standard SWI for motion artifact (p < 0.001), while both conventional susceptibility sequences were superior to Wave-SWI for image noise (p < 0.001). CONCLUSIONS: Wave-SWI can be performed in a 1.5 T clinical setting with robust performance and preservation of diagnostic quality. KEY POINTS: • Wave-SWI accelerated the acquisition of 3D high-resolution susceptibility images in 70% of the acquisition time of the conventional T2*GRE. • Wave-SWI performed superior to T2*w-GRE for visualization of pathology, signal dropout artifacts, and overall diagnostic image quality. • Wave-SWI was noninferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall diagnostic image quality.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
19.
Neurohospitalist ; 12(2): 337-340, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35401917

RESUMEN

The neurological complications of coronavirus disease 2019 (SARS-CoV-2, COVID-19) have so far included a range of para- and post-infectious neuroinflammatory syndromes inclusive of all components of the neuraxis and peripheral neuromuscular system. In comparison to the para-infectious manifestations of anosmia, ageusia, encephalopathy, and encephalitis, cases of post-infectious ADEM have rarely been reported and have most commonly affected the supratentorial component with or without spinal cord involvement. In this report, we describe a case of isolated involvement of the cervicothoracic spinal cord and medulla, occurring in association with microhemorrhages and hemosiderin deposition in the medulla, that presented fulminantly and required aggressive immunotherapy to control the inflammatory attack. We compare and contrast this case against prior reports of acute hemorrhagic leukoencephalitis (Weston Hurst syndrome) and review the atypical features of neuroinflammation reported to occur following COVID-19 infection.

20.
Pediatr Radiol ; 52(6): 1115-1124, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35119490

RESUMEN

BACKGROUND: Susceptibility-weighted imaging (SWI) is highly sensitive for intracranial hemorrhagic and mineralized lesions but is associated with long scan times. Wave controlled aliasing in parallel imaging (Wave-CAIPI) enables greater acceleration factors and might facilitate broader application of SWI, especially in motion-prone populations. OBJECTIVE: To compare highly accelerated Wave-CAIPI SWI to standard SWI in the non-sedated pediatric outpatient setting, with respect to the following variables: estimated scan time, image noise, artifacts, visualization of normal anatomy and visualization of pathology. MATERIALS AND METHODS: Twenty-eight children (11 girls, 17 boys; mean age ± standard deviation [SD] = 128.3±62 months) underwent 3-tesla (T) brain MRI, including standard three-dimensional (3-D) SWI sequence followed by a highly accelerated Wave-CAIPI SWI sequence for each subject. We rated all studies using a predefined 5-point scale and used the Wilcoxon signed rank test to assess the difference for each variable between sequences. RESULTS: Wave-CAIPI SWI provided a 78% and 67% reduction in estimated scan time using the 32- and 20-channel coils, respectively, corresponding to estimated scan time reductions of 3.5 min and 3 min, respectively. All 28 children were imaged without anesthesia. Inter-reader agreement ranged from fair to substantial (k=0.67 for evaluation of pathology, 0.55 for anatomical contrast, 0.3 for central noise, and 0.71 for artifacts). Image noise was rated higher in the central brain with wave SWI (P<0.01), but not in the peripheral brain. There was no significant difference in the visualization of normal anatomical structures and visualization of pathology between the standard and wave SWI sequences (P=0.77 and P=0.79, respectively). CONCLUSION: Highly accelerated Wave-CAIPI SWI of the brain can provide similar image quality to standard SWI, with estimated scan time reduction of 3-3.5 min depending on the radiofrequency coil used, with fewer motion artifacts, at a cost of mild but perceptibly increased noise in the central brain.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Niño , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Masculino , Neuroimagen/métodos , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...