Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Gen Physiol ; 155(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37801066

RESUMEN

PIEZO1 channels are mechanically activated cation channels that play a pivotal role in sensing mechanical forces in various cell types. Their dysfunction has been associated with numerous pathophysiological states, including generalized lymphatic dysplasia, varicose vein disease, and hereditary xerocytosis. Given their physiological relevance, investigating PIEZO1 is crucial for the pharmaceutical industry, which requires scalable techniques to allow for drug discovery. In this regard, several studies have used high-throughput automated patch clamp (APC) combined with Yoda1, a specific gating modifier of PIEZO1 channels, to explore the function and properties of PIEZO1 in heterologous expression systems, as well as in primary cells. However, a combination of solely mechanical stimulation (M-Stim) and high-throughput APC has not yet been available for the study of PIEZO1 channels. Here, we show that optimization of pipetting parameters of the SyncroPatch 384 coupled with multihole NPC-384 chips enables M-Stim of PIEZO1 channels in high-throughput electrophysiology. We used this approach to explore differences between the response of mouse and human PIEZO1 channels to mechanical and/or chemical stimuli. Our results suggest that applying solutions on top of the cells at elevated pipetting flows is crucial for activating PIEZO1 channels by M-Stim on the SyncroPatch 384. The possibility of comparing and combining mechanical and chemical stimulation in a high-throughput patch clamp assay facilitates investigations on PIEZO1 channels and thereby provides an important experimental tool for drug development.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Humanos , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Ensayos Analíticos de Alto Rendimiento , Electrofisiología
2.
Cardiovasc Res ; 119(16): 2623-2637, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-37677054

RESUMEN

AIMS: Atrial fibrillation (AF) is associated with tachycardia-induced cellular electrophysiology alterations which promote AF chronification and treatment resistance. Development of novel antiarrhythmic therapies is hampered by the absence of scalable experimental human models that reflect AF-associated electrical remodelling. Therefore, we aimed to assess if AF-associated remodelling of cellular electrophysiology can be simulated in human atrial-like cardiomyocytes derived from induced pluripotent stem cells in the presence of retinoic acid (iPSC-aCM), and atrial-engineered human myocardium (aEHM) under short term (24 h) and chronic (7 days) tachypacing (TP). METHODS AND RESULTS: First, 24-h electrical pacing at 3 Hz was used to investigate whether AF-associated remodelling in iPSC-aCM and aEHM would ensue. Compared to controls (24 h, 1 Hz pacing) TP-stimulated iPSC-aCM presented classical hallmarks of AF-associated remodelling: (i) decreased L-type Ca2+ current (ICa,L) and (ii) impaired activation of acetylcholine-activated inward-rectifier K+ current (IK,ACh). This resulted in action potential shortening and an absent response to the M-receptor agonist carbachol in both iPSC-aCM and aEHM subjected to TP. Accordingly, mRNA expression of the channel-subunit Kir3.4 was reduced. Selective IK,ACh blockade with tertiapin reduced basal inward-rectifier K+ current only in iPSC-aCM subjected to TP, thereby unmasking an agonist-independent constitutively active IK,ACh. To allow for long-term TP, we developed iPSC-aCM and aEHM expressing the light-gated ion-channel f-Chrimson. The same hallmarks of AF-associated remodelling were observed after optical-TP. In addition, continuous TP (7 days) led to (i) increased amplitude of inward-rectifier K+ current (IK1), (ii) hyperpolarization of the resting membrane potential, (iii) increased action potential-amplitude and upstroke velocity as well as (iv) reversibly impaired contractile function in aEHM. CONCLUSIONS: Classical hallmarks of AF-associated remodelling were mimicked through TP of iPSC-aCM and aEHM. The use of the ultrafast f-Chrimson depolarizing ion channel allowed us to model the time-dependence of AF-associated remodelling in vitro for the first time. The observation of electrical remodelling with associated reversible contractile dysfunction offers a novel platform for human-centric discovery of antiarrhythmic therapies.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Atrios Cardíacos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Potenciales de Acción , Acetilcolina/farmacología
3.
Basic Res Cardiol ; 118(1): 14, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020075

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Anciano , Calcio , Potenciales de Acción , Diferenciación Celular
4.
Blood ; 141(2): 135-146, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36122374

RESUMEN

Despite the identification of the high-incidence red cell antigen Era nearly 40 years ago, the molecular background of this antigen, together with the other 2 members of the Er blood group collection, has yet to be elucidated. Whole exome and Sanger sequencing of individuals with serologically defined Er alloantibodies identified several missense mutations within the PIEZO1 gene, encoding amino acid substitutions within the extracellular domain of the Piezo1 mechanosensor ion channel. Confirmation of Piezo1 as the carrier molecule for the Er blood group antigens was demonstrated using immunoprecipitation, CRISPR/Cas9-mediated gene knockout, and expression studies in an erythroblast cell line. We report the molecular bases of 5 Er blood group antigens: the recognized Era, Erb, and Er3 antigens and 2 novel high-incidence Er antigens, described here as Er4 and Er5, establishing a new blood group system. Anti-Er4 and anti-Er5 are implicated in severe hemolytic disease of the fetus and newborn. Demonstration of Piezo1, present at just a few hundred copies on the surface of the red blood cell, as the site of a new blood group system highlights the potential antigenicity of even low-abundance membrane proteins and contributes to our understanding of the in vivo characteristics of this important and widely studied protein in transfusion biology and beyond.


Asunto(s)
Anemia Hemolítica Congénita , Antígenos de Grupos Sanguíneos , Recién Nacido , Humanos , Mutación Missense , Anemia Hemolítica Congénita/genética , Eritrocitos/metabolismo , Canales Iónicos/química , Antígenos de Grupos Sanguíneos/metabolismo , Mecanotransducción Celular
5.
Commun Biol ; 5(1): 969, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109584

RESUMEN

Crucial conventional patch-clamp approaches to investigate cellular electrophysiology suffer from low-throughput and require considerable experimenter expertise. Automated patch-clamp (APC) approaches are more experimenter independent and offer high-throughput, but by design are predominantly limited to assays containing small, homogenous cells. In order to enable high-throughput APC assays on larger cells such as native cardiomyocytes isolated from mammalian hearts, we employed a fixed-well APC plate format. A broad range of detailed electrophysiological parameters including action potential, L-type calcium current and basal inward rectifier current were reliably acquired from isolated swine atrial and ventricular cardiomyocytes using APC. Effective pharmacological modulation also indicated that this technique is applicable for drug screening using native cardiomyocyte material. Furthermore, sequential acquisition of multiple parameters from a single cell was successful in a high throughput format, substantially increasing data richness and quantity per experimental run. When appropriately expanded, these protocols will provide a foundation for effective mechanistic and phenotyping studies of human cardiac electrophysiology. Utilizing scarce biopsy samples, regular high throughput characterization of primary cardiomyocytes using APC will facilitate drug development initiatives and personalized treatment strategies for a multitude of cardiac diseases.


Asunto(s)
Calcio , Miocitos Cardíacos , Animales , Fenómenos Electrofisiológicos , Electrofisiología , Humanos , Mamíferos , Técnicas de Placa-Clamp , Porcinos
6.
Front Mol Neurosci ; 15: 982316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072300

RESUMEN

Fluoride has been used in the internal recording solution for manual and automated patch clamp experiments for decades because it helps to improve the seal resistance and promotes longer lasting recordings. In manual patch clamp, fluoride has been used to record voltage-gated Na (NaV) channels where seal resistance and access resistance are critical for good voltage control. In automated patch clamp, suction is applied from underneath the patch clamp chip to attract a cell to the hole and obtain a good seal. Since the patch clamp aperture cannot be moved to improve the seal like the patch clamp pipette in manual patch clamp, automated patch clamp manufacturers use internal fluoride to improve the success rate for obtaining GΩ seals. However, internal fluoride can affect voltage-dependence of activation and inactivation, as well as affecting internal second messenger systems and therefore, it is desirable to have the option to perform experiments using physiological, fluoride-free internal solution. We have developed an approach for high throughput fluoride-free recordings on a 384-well based automated patch clamp system with success rates >40% for GΩ seals. We demonstrate this method using hERG expressed in HEK cells, as well as NaV1.5, NaV1.7, and KCa3.1 expressed in CHO cells. We describe the advantages and disadvantages of using fluoride and provide examples of where fluoride can be used, where caution should be exerted and where fluoride-free solutions provide an advantage over fluoride-containing solutions.

7.
J Physiol ; 600(2): 277-297, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555195

RESUMEN

Although automated patch clamp (APC) devices have been around for many years and have become an integral part of many aspects of drug discovery, high throughput instruments with gigaohm seal data quality are relatively new. Experiments where a large number of compounds are screened against ion channels are ideally suited to high throughput APC, particularly when the amount of compound available is low. Here we evaluate different APC approaches using a variety of ion channels and screening settings. We have performed a screen of 1920 compounds on GluN1/GluN2A NMDA receptors for negative allosteric modulation using both the SyncroPatch 384 and FLIPR. Additionally, we tested the effect of 36 arthropod venoms on NaV 1.9 using a single 384-well plate on the SyncroPatch 384. As an example for mutant screening, a range of acid-sensing ion channel variants were tested and the success rate increased through fluorescence-activated cell sorting (FACS) prior to APC experiments. Gigaohm seal data quality makes the 384-format accessible to recording of primary and stem cell-derived cells on the SyncroPatch 384. We show recordings in voltage and current clamp modes of stem cell-derived cardiomyocytes. In addition, the option of intracellular solution exchange enabled investigations into the effects of intracellular Ca2+ and cAMP on TRPC5 and HCN2 currents, respectively. Together, these data highlight the broad applicability and versatility of APC platforms and also outlines some limitations of the approach. KEY POINTS: High throughput automated patch clamp (APC) can be used for a variety of applications involving ion channels. Lower false positive rates were achieved using automated patch clamp versus a fluorometric imaging plate reader (FLIPR) in a high throughput compound screen against NMDA receptors.  Genetic variants and mutations can be screened on a single 384-well plate to reduce variability of experimental parameters. Intracellular solution can be perfused to investigate effects of ions and second messenger systems without the need for excised patches. Primary cells and stem cell-derived cells can be used on high throughput APC with reasonable success rates for cell capture, voltage clamp measurements and action potential recordings in current clamp mode.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Canales Iónicos , Miocitos Cardíacos , Técnicas de Placa-Clamp
8.
J Pharmacol Toxicol Methods ; 112: 107125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34500078

RESUMEN

INTRODUCTION: For reliable identification of cardiac safety risk, compounds should be screened for activity on cardiac ion channels in addition to hERG, including NaV1.5 and CaV1.2. We identified different parameters that might affect IC50s of compounds on NaV1.5 peak and late currents recorded using automated patch clamp (APC) and suggest outlines for best practices. METHODS: APC instruments SyncroPatch 384 and Patchliner were used to record NaV1.5 peak and late current. Up to 24 CiPA compounds were used to investigate effects of voltage protocol, holding potential (-80 mV or - 95 mV) and temperature (23 ± 1 °C or 36 ± 1 °C) on IC50 values on hNaV1.5 overexpressed in HEK or CHO cells either as frozen cells or running cultures. RESULTS: The IC50s of 18 compounds on the NaV1.5 peak current recorded on the SyncroPatch 384 using the CiPA step-ramp protocol correlated well with the literature. The use of frozen or cultured cells did not affect IC50s but voltage protocol and holding potential did cause differences in IC50 values. Temperature can affect Vhalf of inactivation and also compound potency. A compound incubation time of 5-6 min was sufficient for most compounds, however slow acting compounds such as terfenadine required longer to reach maximum effect. DISCUSSION: We conclude that holding potential, voltage protocol and temperature can affect IC50 values and recommend the use of the CiPA step-ramp protocol at physiological temperature to record NaV1.5 peak and late currents for cardiac safety. Further recommendations include: a minimum compound incubation time of 5 min, a replicate number of 4 and the use of positive and negative controls for reliable IC50s.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Animales , Células CHO , Trastorno del Sistema de Conducción Cardíaco/diagnóstico , Cricetinae , Cricetulus , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp
9.
J Pharmacol Toxicol Methods ; 105: 106890, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32574700

RESUMEN

INTRODUCTION: In response to the ongoing shift of the regulatory cardiac safety paradigm, a recent White Paper proposed general principles for developing and implementing proarrhythmia risk prediction models. These principles included development strategies to validate models, and implementation strategies to ensure a model developed by one lab can be used by other labs in a consistent manner in the presence of lab-to-lab experimental variability. While the development strategies were illustrated through the validation of the model under the Comprehensive In vitro Proarrhythmia Assay (CiPA), the implementation strategies have not been adopted yet. METHODS: The proposed implementation strategies were applied to the CiPA model by performing a sensitivity analysis to identify a subset of calibration drugs that were most critical in determining the classification thresholds for proarrhythmia risk prediction. RESULTS: The selected calibration drugs were able to recapitulate classification thresholds close to those calculated from the full list of CiPA drugs. Using an illustrative dataset it was shown that a new lab could use these calibration drugs to establish its own classification thresholds (lab-specific calibration), and verify that the model prediction accuracy in the new lab is comparable to that in the original lab where the model was developed (lab-specific validation). DISCUSSION: This work used the CiPA model as an example to illustrate how to adopt the proposed model implementation strategies to select calibration drugs and perform lab-specific calibration and lab-specific validation. Generic in nature, these strategies could be generally applied to different proarrhythmia risk prediction models using various experimental systems under the new paradigm.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Bioensayo/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Calibración , Evaluación Preclínica de Medicamentos/métodos , Electrocardiografía/métodos , Humanos
11.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209365

RESUMEN

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Asunto(s)
Canal de Potasio ERG1/antagonistas & inhibidores , Medición de Riesgo/métodos , Torsades de Pointes/inducido químicamente , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Biológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Seguridad , Torsades de Pointes/fisiopatología
13.
Expert Opin Drug Discov ; 13(3): 269-277, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29343120

RESUMEN

INTRODUCTION: Automated patch clamp (APC) devices have become commonplace in many industrial and academic labs. Their ease-of-use and flexibility have ensured that users can perform routine screening experiments and complex kinetic experiments on the same device without the need for months of training and experience. APC devices are being developed to increase throughput and flexibility. Areas covered: Experimental options such as temperature control, internal solution exchange and current clamp have been available on some APC devices for some time, and are being introduced on other devices. A comprehensive review of the literature pertaining to these features for the Patchliner, QPatch and Qube and data for these features for the SyncroPatch 384/768PE, is given. In addition, novel features such as dynamic clamp on the Patchliner and light stimulation of action potentials using channelrhodosin-2 is discussed. Expert opinion: APC devices will continue to play an important role in drug discovery. The instruments will be continually developed to meet the needs of HTS laboratories and for basic research. The use of stem cells and recordings in current clamp mode will increase, as will the development of complex add-ons such as dynamic clamp and optical stimulation on high throughput devices.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Canales Iónicos/metabolismo , Animales , Diseño de Fármacos , Humanos , Técnicas de Placa-Clamp/métodos
14.
Biochim Biophys Acta ; 1862(10): 1994-2003, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27443495

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and new therapeutic targets are urgently needed. One of the hallmarks of cancer is changed pH-homeostasis and potentially pH-sensors may play an important role in cancer cell behavior. Two-pore potassium channels (K2P) are pH-regulated channels that conduct a background K(+) current, which is involved in setting the plasma membrane potential (Vm). Some members of the K2P superfamily were reported as crucial players in driving tumor progression. The aim of this study was to investigate pH-regulated K(+) currents in PDAC cells and determine possible effects on their pathological phenotype. Using a planar high-throughput patch-clamp system (SyncroPatch 384PE) we identified a pH-regulated K(+) current in the PDAC cell line BxPC-3. The current was inhibited by extracellular acidification and intracellular alkalization. Exposure to a set of different K(+) channel inhibitors, and the TREK-1 (K2P2.1)-specific activator BL1249, TREK-1 was identified as the main component of pH-regulated current. A voltage-sensor dye (VF2.1.Cl) was used to monitor effects of pH and BL1249 on Vm in more physiological conditions and TREK-1-mediated current was found as critical player in setting Vm. We assessed a possible role of TREK-1 in PDAC progression using cell proliferation and migration assays and observed similar trends with attenuated proliferation/migration rates in acidic (pH<7.0) and alkaline (pH>7.4) conditions. Notably, BL1249 inhibited both PDAC cell proliferation and migration indicating that hyperpolarization of Vm attenuates cancer cell behavior. TREK-1 may therefore be a promising novel target for PDAC therapy.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular , Proliferación Celular , Potenciales de la Membrana , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Canales de Potasio de Dominio Poro en Tándem/genética
15.
Cell ; 164(5): 937-49, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919430

RESUMEN

Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/fisiología , Potasio/metabolismo , Electrofisiología , Humanos , Cinética , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem/genética
16.
J Lab Autom ; 21(6): 779-793, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26702021

RESUMEN

We have developed an automated patch clamp module for high-throughput ion channel screening, recording from 384 cells simultaneously. The module is incorporated into a laboratory pipetting robot and uses a 384-channel pipettor head for application of cells and compounds. The module contains 384 amplifier channels for fully parallel recordings using a digital amplifier. Success rates for completed experiments (1- to 4-point concentration-response curves for cells satisfying defined quality control parameters) of greater than 85% have been routinely achieved with, for example, HEK, CHO, and RBL cell lines expressing hNaV1.7, hERG, Kir2.1, GABA, or glutamate receptors. Pharmacology experiments are recorded and analyzed using specialized software, and the pharmacology of hNaV1.7 and hERG is described. Fast external solution exchange rates of <50 ms are demonstrated using Kir2.1. Short exposure times are achieved by stacking the external solutions inside the pipette of the robot to minimize exposure of the ligand on the receptor. This ensures that ligand-gated ion channels, for example, GABA and glutamate described in this report, can be reproducibly recorded. Stem cell-derived cardiomyocytes have also been used with success rates of 52% for cells that have a seal resistance of >200 MΩ, and recordings of voltage-gated Na+ and Ca2+ are shown.


Asunto(s)
Automatización de Laboratorios/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas de Placa-Clamp/métodos , Animales , Línea Celular , Humanos , Canales Iónicos/análisis , Receptores de Superficie Celular/análisis , Robótica/métodos
17.
Channels (Austin) ; 8(6): 551-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483285

RESUMEN

In a previous study we identified an extensive gating network within the inwardly rectifying Kir1.1 (ROMK) channel by combining systematic scanning mutagenesis and functional analysis with structural models of the channel in the closed, pre-open and open states. This extensive network appeared to stabilize the open and pre-open states, but the network fragmented upon channel closure. In this study we have analyzed the gating kinetics of different mutations within key parts of this gating network. These results suggest that the structure of the transition state (TS), which connects the pre-open and closed states of the channel, more closely resembles the structure of the pre-open state. Furthermore, the G-loop, which occurs at the center of this extensive gating network, appears to become unstructured in the TS because mutations within this region have a 'catalytic' effect upon the channel gating kinetics.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Rectificación Interna/metabolismo , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Ratas , Xenopus
18.
Structure ; 22(7): 1037-46, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24980796

RESUMEN

X-ray crystallography has provided tremendous insight into the different structural states of membrane proteins and, in particular, of ion channels. However, the molecular forces that determine the thermodynamic stability of a particular state are poorly understood. Here we analyze the different X-ray structures of an inwardly rectifying potassium channel (Kir1.1) in relation to functional data we obtained for over 190 mutants in Kir1.1. This mutagenic perturbation analysis uncovered an extensive, state-dependent network of physically interacting residues that stabilizes the pre-open and open states of the channel, but fragments upon channel closure. We demonstrate that this gating network is an important structural determinant of the thermodynamic stability of these different gating states and determines the impact of individual mutations on channel function. These results have important implications for our understanding of not only K+ channel gating but also the more general nature of conformational transitions that occur in other allosteric proteins.


Asunto(s)
Activación del Canal Iónico/genética , Mutación , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Conformación Proteica , Animales , Cristalografía por Rayos X , Femenino , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Modelos Moleculares , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Ratas , Termodinámica , Xenopus
19.
Nat Chem Biol ; 9(8): 507-13, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23728494

RESUMEN

Most known small-molecule inhibitors of voltage-gated ion channels have poor subtype specificity because they interact with a highly conserved binding site in the central cavity. Using alanine-scanning mutagenesis, electrophysiological recordings and molecular modeling, we have identified a new drug-binding site in Kv1.x channels. We report that Psora-4 can discriminate between related Kv channel subtypes because, in addition to binding the central pore cavity, it binds a second, less conserved site located in side pockets formed by the backsides of S5 and S6, the S4-S5 linker, part of the voltage sensor and the pore helix. Simultaneous drug occupation of both binding sites results in an extremely stable nonconducting state that confers high affinity, cooperativity, use-dependence and selectivity to Psora-4 inhibition of Kv1.x channels. This new mechanism of inhibition represents a molecular basis for the development of a new class of allosteric and selective voltage-gated channel inhibitors.


Asunto(s)
Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/química , Ficusina/química , Ficusina/farmacología , Canal de Potasio Kv1.5/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Especificidad por Sustrato
20.
Channels (Austin) ; 6(6): 473-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22991046

RESUMEN

We previously reported that TREK-1 gating by internal pH and pressure occurs close to or within the selectivity filter. These conclusions were based upon kinetic measurements of high-affinity block by quaternary ammonium (QA) ions that appeared to exhibit state-independent accessibility to their binding site within the pore. Intriguingly, recent crystal structures of two related K2P potassium channels were also both found to be open at the helix bundle crossing. However, this did not exclude the possibility of gating at the bundle crossing and it was suggested that side-fenestrations within these structures might allow state-independent access of QA ions to their binding site. In this addendum to our original study we demonstrate that even hydrophobic QA ions do not access the TREK-1 pore via these fenestrations. Furthermore, by using a chemically reactive QA ion immobilized within the pore via covalent cysteine modification we provide additional evidence that the QA binding site remains accessible to the cytoplasm in the closed state. These results support models of K2P channel gating which occur close to or within the selectivity filter and do not involve closure at the helix bundle crossing.


Asunto(s)
Espacio Intracelular/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Animales , Humanos , Modelos Moleculares , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/química , Conformación Proteica , Compuestos de Amonio Cuaternario/química , Homología Estructural de Proteína , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...