Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 367, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690616

RESUMEN

The correct establishment of DNA methylation patterns during mouse early development is essential for cell fate specification. However, the molecular targets as well as the mechanisms that determine the specificity of the de novo methylation machinery during differentiation are not completely elucidated. Here we show that the DNMT3B-dependent DNA methylation of key developmental regulatory regions at epiblast-like cells (EpiLCs) provides an epigenetic priming that ensures flawless commitment at later stages. Using in vitro stem cell differentiation and loss of function experiments combined with high-throughput genome-wide bisulfite-, bulk-, and single cell RNA-sequencing we dissected the specific role of DNMT3B in cell fate. We identify DNMT3B-dependent regulatory elements on the genome which, in Dnmt3b knockout (3BKO), impair the differentiation into meso-endodermal (ME) progenitors and redirect EpiLCs towards the neuro-ectodermal lineages. Moreover, ectopic expression of DNMT3B in 3BKO re-establishes the DNA methylation of the master regulator Sox2 super-enhancer, downmodulates its expression, and restores the expression of ME markers. Taken together, our data reveal that DNMT3B-dependent methylation at the epiblast stage is essential for the priming of the meso-endodermal lineages and provide functional characterization of the de novo DNMTs during EpiLCs lineage determination.


Asunto(s)
Endodermo , Células Madre Embrionarias de Ratones , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Endodermo/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Diferenciación Celular , Linaje de la Célula , Metilación de ADN
2.
Nucleic Acids Res ; 50(5): 2587-2602, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137201

RESUMEN

The histone acetyltransferase p300 (also known as KAT3B) is a general transcriptional coactivator that introduces the H3K27ac mark on enhancers triggering their activation and gene transcription. Genome-wide screenings demonstrated that a large fraction of long non-coding RNAs (lncRNAs) plays a role in cellular processes and organ development although the underlying molecular mechanisms remain largely unclear (1,2). We found 122 lncRNAs that interacts directly with p300. In depth analysis of one of these, lncSmad7, is required to maintain ESC self-renewal and it interacts to the C-terminal domain of p300. lncSmad7 also contains predicted RNA-DNA Hoogsteen forming base pairing. Combined Chromatin Isolation by RNA precipitation followed by sequencing (ChIRP-seq) together with CRISPR/Cas9 mutagenesis of the target sites demonstrate that lncSmad7 binds and recruits p300 to enhancers in trans, to trigger enhancer acetylation and transcriptional activation of its target genes. Thus, these results unveil a new mechanism by which p300 is recruited to the genome.


Asunto(s)
Histonas , ARN Largo no Codificante , Acetilación , Acetiltransferasas/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos , Histonas/genética , Histonas/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948395

RESUMEN

Smad7 has been identified as a negative regulator of the transforming growth factor TGF-ß pathway by direct interaction with the TGF-ß type I receptor (TßR-I). Although Smad7 has also been shown to play TGF-ß unrelated functions in the cytoplasm and in the nucleus, a comprehensive analysis of its nuclear function has not yet been performed. Here, we show that in ESCs Smad7 is mainly nuclear and acts as a general transcription factor regulating several genes unrelated to the TGF-ß pathway. Loss of Smad7 results in the downregulation of several key stemness master regulators, including Pou5f1 and Zfp42, and in the upregulation of developmental genes, with consequent loss of the stem phenotype. Integrative analysis of genome-wide mapping data for Smad7 and ESC self-renewal and pluripotency transcriptional regulators revealed that Smad7 co-occupies promoters of highly expressed key stemness regulators genes, by binding to a specific consensus response element NCGGAAMM. Altogether, our data establishes Smad7 as a new, integral component of the regulatory circuitry that controls ESC identity.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Proteína smad7/genética , Activación Transcripcional , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Eliminación de Gen , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/genética
4.
Molecules ; 26(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800024

RESUMEN

The endocannabinoid system (ECS) is involved in the modulation of several basic biological processes, having widespread roles in neurodevelopment, neuromodulation, immune response, energy homeostasis and reproduction. In the adult central nervous system (CNS) the ECS mainly modulates neurotransmitter release, however, a substantial body of evidence has revealed a central role in regulating neurogenesis in developing and adult CNS, also under pathological conditions. Due to the complexity of investigating ECS functions in neural progenitors in vivo, we tested the suitability of the ST14A striatal neural progenitor cell line as a simplified in vitro model to dissect the role and the mechanisms of ECS-regulated neurogenesis, as well as to perform ECS-targeted pharmacological approaches. We report that ST14A cells express various ECS components, supporting the presence of an active ECS. While CB1 and CB2 receptor blockade did not affect ST14A cell number, exogenous administration of the endocannabinoid 2-AG and the synthetic CB2 agonist JWH133 increased ST14A cell proliferation. Phospholipase C (PLC), but not PI3K pharmacological blockade negatively modulated CB2-induced ST14A cell proliferation, suggesting that a PLC pathway is involved in the steps downstream to CB2 activation. On the basis of our results, we propose ST14A neural progenitor cells as a useful in vitro model for studying ECS modulation of neurogenesis, also in prospective in vivo pharmacological studies.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/fisiología , Receptores de Cannabinoides/metabolismo , Animales , Cannabinoides/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/citología , Estrenos/farmacología , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Pirrolidinonas/farmacología , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Receptores de Cannabinoides/genética , Fosfolipasas de Tipo C/antagonistas & inhibidores
5.
Cancers (Basel) ; 13(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670894

RESUMEN

Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.

6.
Nat Genet ; 53(2): 215-229, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526924

RESUMEN

Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.


Asunto(s)
Blastocisto/fisiología , Metilación de ADN/fisiología , Células Madre Embrionarias/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica , Histonas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/genética , ADN Metiltransferasa 3B
7.
Nature ; 543(7643): 72-77, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28225755

RESUMEN

In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN/genética , ADN/metabolismo , Genes/genética , ARN Mensajero/biosíntesis , Iniciación de la Transcripción Genética , Animales , Línea Celular , ADN/química , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Poliadenilación , Caperuzas de ARN/metabolismo , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Sitio de Iniciación de la Transcripción , ADN Metiltransferasa 3B
8.
Nucleic Acids Res ; 45(3): 1433-1441, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180324

RESUMEN

Functional characterization of the transcriptome requires tools for the systematic investigation of RNA post-transcriptional modifications. 2΄-O-methylation (2΄-OMe) of the ribose moiety is one of the most abundant post-transcriptional modifications of RNA, although its systematic analysis is difficult due to the lack of reliable high-throughput mapping methods. We describe here a novel high-throughput approach, named 2OMe-seq, that enables fast and accurate mapping at single-base resolution, and relative quantitation, of 2΄-OMe modified residues. We compare our method to other state-of-art approaches, and show that it achieves higher sensitivity and specificity. By applying 2OMe-seq to HeLa cells, we show that it is able to recover the majority of the annotated 2΄-OMe sites on ribosomal RNA. By performing knockdown of the Fibrillarin methyltransferase in mouse embryonic stem cells (ESCs) we show the ability of 2OMe-seq to capture 2΄-O-Methylation level variations. Moreover, using 2OMe-seq data we here report the discovery of 12 previously unannotated 2΄-OMe sites across 18S and 28S rRNAs, 11 of which are conserved in both human and mouse cells, and assigned the respective snoRNAs for all sites. Our approach expands the repertoire of methods for transcriptome-wide mapping of RNA post-transcriptional modifications, and promises to provide novel insights into the role of this modification.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico/química , ARN Ribosómico/genética , Análisis de Secuencia de ARN/métodos , Animales , Secuencia Conservada , Células Madre Embrionarias/metabolismo , Células HeLa , Humanos , Metilación , Ratones , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/química , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Transcriptoma
9.
Biochim Biophys Acta ; 1859(10): 1322-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27344374

RESUMEN

In mammals the cell-cycle progression through the G1 phase is a tightly regulated process mediated by the transcriptional activation of early genes in response to mitogenic stimuli, whose dysregulation often leads to tumorigenesis. We here report the discovery by RNA-seq of cell-cycle regulated (CCR) long intergenic non-coding RNAs (lincRNAs), potentially involved in the control of the cell-cycle progression. We identified 10 novel lincRNAs expressed in response to serum treatment in mouse embryonic fibroblasts (MEFs) and in BALB/c fibroblasts, comparably to early genes. By loss-of-function experiments we found that lincRNA CCR492 is required for G1/S progression, localizes in the cell cytoplasm and contains 4 let-7 microRNA recognition elements (MREs). Mechanistically, CCR492 functions as a competing endogenous RNA (ceRNA) to antagonize the function of let-7 microRNAs, leading to the de-repression of c-Myc. Moreover, we show that ectopic expression of CCR492 along with a constitutively active H-Ras promotes cell transformation. Thus, we identified a new lincRNA expressed as an early gene in mammalian cells to regulate the cell-cycle progression by upregulating c-Myc expression.


Asunto(s)
Transformación Celular Neoplásica/genética , Fibroblastos/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Largo no Codificante/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Embrión de Mamíferos , Fibroblastos/citología , Fase G1 , Ratones , Ratones Endogámicos BALB C , MicroARNs/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Largo no Codificante/metabolismo , Activación Transcripcional
10.
Nucleic Acids Res ; 43(14): 6814-26, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25925565

RESUMEN

Ten-eleven translocation (Tet) genes encode for a family of hydroxymethylase enzymes involved in regulating DNA methylation dynamics. Tet1 is highly expressed in mouse embryonic stem cells (ESCs) where it plays a critical role the pluripotency maintenance. Tet1 is also involved in cell reprogramming events and in cancer progression. Although the functional role of Tet1 has been largely studied, its regulation is poorly understood. Here we show that Tet1 gene is regulated, both in mouse and human ESCs, by the stemness specific factors Oct3/4, Nanog and by Myc. Thus Tet1 is integrated in the pluripotency transcriptional network of ESCs. We found that Tet1 is switched off by cell proliferation in adult cells and tissues with a consequent genome-wide reduction of 5hmC, which is more evident in hypermethylated regions and promoters. Tet1 downmodulation is mediated by the Polycomb repressive complex 2 (PRC2) through H3K27me3 histone mark deposition. This study expands the knowledge about Tet1 involvement in stemness circuits in ESCs and provides evidence for a transcriptional relationship between Tet1 and PRC2 in adult proliferating cells improving our understanding of the crosstalk between the epigenetic events mediated by these factors.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Proto-Oncogénicas/genética , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
11.
Cell Rep ; 10(5): 674-683, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25660018

RESUMEN

Ten eleven translocation (Tet) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC can be further excised by thymine-DNA glycosylase (Tdg). Here, we present a genome-wide approach, named methylation-assisted bisulfite sequencing (MAB-seq), that enables single-base resolution mapping of 5fC and 5caC and measures their abundance. Application of this method to mouse embryonic stem cells (ESCs) shows the occurrence of 5fC and 5caC residues on the hypomethylated promoters of highly expressed genes, which is increased upon Tdg silencing, revealing active DNA demethylation on these promoters. Genome-wide mapping of Tdg reveals extensive colocalization with Tet1 on active promoters. These regions were found to be methylated by Dnmt1 and Dnmt3a and demethylated by a Tet-dependent mechanism. Our work demonstrates the DNA methylation dynamics that occurs on the promoters of the expressed genes and provides a genomic reference map of 5fC and 5caC in ESCs.

12.
Stem Cells ; 33(3): 742-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25504116

RESUMEN

Although much is known about the pluripotency self-renewal circuitry, the molecular events that lead embryonic stem cells (ESCs) exit from pluripotency and begin differentiation are largely unknown. We found that the zinc finger transcription factor Snai1, involved in gastrulation and epithelial-mesenchymal transition, is already expressed in the inner cell mass of the preimplantation blastocysts. In ESCs, Snai1 does not respond to TGFß or BMP4 signaling but it is induced by retinoic acid treatment, which induces the binding, on the Snai1 promoter, of the retinoid receptors RARγ and RXRα, the dissociation of the Polycomb repressor complex 2 which results in the decrease of H3K27me3, and the increase of histone H3K4me3. Snai1 mediates the repression of pluripotency genes by binding directly to the promoters of Nanog, Nr5a2, Tcl1, c-Kit, and Tcfcp2l1. The transient activation of Snai1 in embryoid bodies induces the expression of the markers of all three germ layers. These results suggest that Snai1 is a key factor that triggers ESCs exit from the pluripotency state and initiate their differentiation processes.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/genética , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Tretinoina/farmacología
13.
PLoS One ; 9(2): e88933, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586446

RESUMEN

Myc is a master transcription factor that has been demonstrated to be required for embryonic stem cell (ESC) pluripotency, self-renewal, and inhibition of differentiation. Although recent works have identified several Myc-targets in ESCs, the list of Myc binding sites is largely incomplete due to the low sensitivity and specificity of the antibodies available. To systematically identify Myc binding sites in mouse ESCs, we used a stringent streptavidin-based genome-wide chromatin immunoprecipitation (ChIP-Seq) approach with biotin-tagged Myc (Bio-Myc) as well as a ChIP-Seq of the Myc binding partner Max. This analysis identified 4325 Myc binding sites, of which 2885 were newly identified. The identified sites overlap with more than 85% of the Max binding sites and are enriched for H3K4me3-positive promoters and active enhancers. Remarkably, this analysis unveils that Myc/Max regulates chromatin modifiers and transcriptional regulators involved in stem cell self-renewal linking the Myc-centered network with the Polycomb and the Core networks. These results provide insights into the contribution of Myc and Max in maintaining stem cell self-renewal and keeping these cells in an undifferentiated state.


Asunto(s)
Sitios de Unión/genética , Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes/genética , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Inmunoprecipitación de Cromatina/métodos , Biología Computacional , Genómica/métodos , Inmunoprecipitación , Ratones , Proteínas del Grupo Polycomb/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN/métodos
14.
Genome Biol ; 14(8): R91, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23987249

RESUMEN

BACKGROUND: Ten-Eleven Translocation (TETs)proteins mediate the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet1 is expressed at high levels in mouse embryonic stem cells (ESCs), where it mediates the induction of 5hmC decoration on gene-regulatory elements. While the function of Tet1 is known, the mechanisms of its specificity remain unclear. RESULTS: We perform a genome-wide comparative analysis of 5hmC in pluripotent ESCs, as well as in differentiated embryonic and adult cells. We find that 5hmC co-localization with Polycomb repressive complex 2 (PRC2) is specific to ESCs and is absent in differentiated cells. Tet1 in ESCs is distributed on bivalent genes in two independent pools: one with Sin3a centered at non-hydroxymethylated transcription start sites and another centered downstream from these sites. This latter pool of Tet1 co-localizes with 5hmC and PRC2. Through co-immunoprecipitation experiments, we show that Tet1 forms a complex with PRC2 specifically in ESCs. Genome-wide analysis of 5hmC profiles in ESCs following knockdown of the PRC2 subunit Suz12 shows a reduction of 5hmC within promoter sequences, specifically at H3K27me3-positive regions of bivalent promoters. CONCLUSIONS: In ESCs, PRC2 recruits Tet1 to chromatin at H3K27me3 positive regions of the genome, with 5hmC enriched in a broad peak centered 455 bp after the transcription start site and dependent on the PRC2 component Suz12. These results suggest that PRC2-dependent recruitment of Tet1 contributes to epigenetic plasticity throughout cell differentiation.


Asunto(s)
Células Madre Adultas/metabolismo , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Genoma , Complejo Represivo Polycomb 2/genética , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/metabolismo , Células Madre Adultas/citología , Animales , Diferenciación Celular , Cromatina/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA