Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423193

RESUMEN

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Asunto(s)
Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cerebelo/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
J Clin Invest ; 134(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227368

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ácido Tauroquenodesoxicólico , Ratones , Adulto , Animales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Ratones Transgénicos
3.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962377

RESUMEN

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/genética , Estudios Transversales , Ataxia , Biomarcadores
4.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408238

RESUMEN

Machado-Joseph disease (MJD) is a dominant neurodegenerative disease caused by an expanded CAG repeat in the ATXN3 gene encoding the ataxin-3 protein. Several cellular processes, including transcription and apoptosis, are disrupted in MJD. To gain further insights into the extent of dysregulation of mitochondrial apoptosis in MJD and to evaluate if expression alterations of specific apoptosis genes/proteins can be used as transcriptional biomarkers of disease, the expression levels of BCL2, BAX and TP53 and the BCL2/BAX ratio (an indicator of susceptibility to apoptosis) were assessed in blood and post-mortem brain samples from MJD subjects and MJD transgenic mice and controls. While patients show reduced levels of blood BCL2 transcripts, this measurement displays low accuracy to discriminate patients from matched controls. However, increased levels of blood BAX transcripts and decreased BCL2/BAX ratio are associated with earlier onset of disease, indicating a possible association with MJD pathogenesis. Post-mortem MJD brains show increased BCL2/BAX transcript ratio in the dentate cerebellar nucleus (DCN) and increased BCL2/BAX insoluble protein ratio in the DCN and pons, suggesting that in these regions, severely affected by degeneration in MJD, cells show signs of apoptosis resistance. Interestingly, a follow-up study of 18 patients further shows that blood BCL2 and TP53 transcript levels increase over time in MJD patients. Furthermore, while the similar levels of blood BCL2, BAX, and TP53 transcripts observed in preclinical subjects and controls is mimicked by pre-symptomatic MJD mice, the expression profile of these genes in patient brains is partially replicated by symptomatic MJD mice. Globally, our findings indicate that there is tissue-specific vulnerability to apoptosis in MJD subjects and that this tissue-dependent behavior is partially replicated in a MJD mouse model.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Estudios de Seguimiento , Enfermedades Neurodegenerativas/complicaciones , Proteína X Asociada a bcl-2/genética , Ratones Transgénicos , Apoptosis
5.
medRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163081

RESUMEN

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.

6.
Brain ; 146(10): 4132-4143, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37071051

RESUMEN

Transcriptional dysregulation has been described in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), an autosomal dominant ataxia caused by a polyglutamine expansion in the ataxin-3 protein. As ataxin-3 is ubiquitously expressed, transcriptional alterations in blood may reflect early changes that start before clinical onset and might serve as peripheral biomarkers in clinical and research settings. Our goal was to describe enriched pathways and report dysregulated genes, which can track disease onset, severity or progression in carriers of the ATXN3 mutation (pre-ataxic subjects and patients). Global dysregulation patterns were identified by RNA sequencing of blood samples from 40 carriers of ATXN3 mutation and 20 controls and further compared with transcriptomic data from post-mortem cerebellum samples of MJD patients and controls. Ten genes-ABCA1, CEP72, PTGDS, SAFB2, SFSWAP, CCDC88C, SH2B1, LTBP4, MEG3 and TSPOAP1-whose expression in blood was altered in the pre-ataxic stage and simultaneously, correlated with ataxia severity in the overt disease stage, were analysed by quantitative real-time PCR in blood samples from an independent set of 170 SCA3/MJD subjects and 57 controls. Pathway enrichment analysis indicated the Gαi signalling and the oestrogen receptor signalling to be similarly affected in blood and cerebellum. SAFB2, SFSWAP and LTBP4 were consistently dysregulated in pre-ataxic subjects compared to controls, displaying a combined discriminatory ability of 79%. In patients, ataxia severity was associated with higher levels of MEG3 and TSPOAP1. We propose expression levels of SAFB2, SFSWAP and LTBP4 as well as MEG3 and TSPOAP1 as stratification markers of SCA3/MJD progression, deserving further validation in longitudinal studies and in independent cohorts.


Asunto(s)
Enfermedad de Machado-Joseph , Ataxias Espinocerebelosas , Humanos , Enfermedad de Machado-Joseph/genética , Transcriptoma , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/complicaciones , Ataxina-3/genética , Biomarcadores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Microfilamentos/genética , Péptidos y Proteínas de Señalización Intracelular/genética
7.
Biomedicines ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36830784

RESUMEN

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant ataxia worldwide. MJD is characterized by late-onset progressive cerebellar ataxia associated with variable clinical findings, including pyramidal signs and a dystonic-rigid extrapyramidal syndrome. In the Portuguese archipelago of the Azores, the worldwide population cluster for this disorder (prevalence of 39 in 100,000 inhabitants), a cohort of MJD mutation carriers belonging to extensively studied pedigrees has been followed since the late 1990s. Studies of the homogeneous Azorean MJD cohort have been contributing crucial information to the natural history of this disease as well as allowing the identification of novel molecular biomarkers. Moreover, as interventional studies for this globally rare and yet untreatable disease are emerging, this cohort should be even more important for the recruitment of trial participants. In this paper, we profile the Azorean cohort of MJD carriers, constituted at baseline by 20 pre-ataxic carriers and 52 patients, which currently integrates the European spinocerebellar ataxia type 3/Machado-Joseph disease Initiative (ESMI), a large European longitudinal MJD cohort. Moreover, we summarize the main studies based on this cohort and highlight the contributions made to advances in MJD research. Knowledge of the profile of the Azorean MJD cohort is not only important in the context of emergent interventional trials but is also pertinent for the implementation of adequate interventional measures, constituting relevant information for Lay Associations and providing data to guide healthcare decision makers.

8.
Neuropathol Appl Neurobiol ; 49(2): e12892, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36798010

RESUMEN

The European Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative (ESMI) is a consortium established with the ambition to set up the largest European longitudinal trial-ready cohort of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease (SCA3/MJD), the most common autosomal dominantly inherited ataxia worldwide. A major focus of ESMI has been the identification of SCA3/MJD biomarkers to enable future interventional studies. As biosample collection and processing variables significantly impact the outcomes of biomarkers studies, biosampling procedures standardisation was done previously to study visit initiation. Here, we describe the ESMI consensus biosampling protocol, developed within the scope of ESMI, that ultimately might be translated to other neurodegenerative disorders, particularly ataxias, being the first step to protocol harmonisation in the field.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Machado-Joseph , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Biomarcadores
9.
Cerebellum ; 22(1): 37-45, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034258

RESUMEN

Untranslated regions are involved in the regulation of transcriptional and post-transcriptional processes. Characterization of these regions remains poorly explored for ATXN3, the causative gene of Machado-Joseph disease (MJD). Although a few genetic modifiers have been identified for MJD age at onset (AO), they only explain a small fraction of the AO variance. Our aim was to analyse variation at the 3'UTR of ATXN3 in MJD patients, analyse its impact on AO and attempt to build haplotypes that might discriminate between normal and expanded alleles.After assessing ATXN3 3'UTR variants in molecularly confirmed MJD patients, an in silico analysis was conducted to predict their functional impact (e.g. their effect on miRNA-binding sites). Alleles in cis with the expanded (CAG)n were inferred from family data, and haplotypes were built. The effect of the alternative alleles on the AO and on SARA and NESSCA ataxia scales was tested.Nine variants, all previously described, were found. For eight variants, in silico analyses predicted (a) deleterious effects (rs10151135; rs55966267); (b) changes on miRNA-binding sites (rs11628764; rs55966267; rs709930) and (c) alterations of RNA-binding protein (RBP)-binding sites (rs1055996; rs910369; rs709930; rs10151135; rs3092822; rs7158733). Patients harbouring the alternative allele at rs10151135 had significantly higher SARA Axial subscores (p = 0.023), comparatively with those homozygous for the reference allele. Ten different haplotypes were obtained, one of which was exclusively found in cis with the expanded and four with the normal allele. These findings, which are relevant for the design of allele-specific therapies, warrant further investigation in independent MJD cohorts.


Asunto(s)
Enfermedad de Machado-Joseph , MicroARNs , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Regiones no Traducidas 3'/genética , MicroARNs/genética , Variación Genética , Proteínas Represoras/genética
10.
Eur J Neurol ; 29(8): 2439-2452, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35478426

RESUMEN

BACKGROUND AND PURPOSE: Clinical trials in spinocerebellar ataxia type 3 (SCA3) will require biomarkers for use as outcome measures. METHODS: To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid biomarkers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically assessed, and the plasma concentrations of the four proteins were analysed on the Simoa HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed for t-tau and phosphorylated tau (p-tau181 ). A transgenic SCA3 mouse model (MJDTg) was used to measure cerebellar t-tau levels. RESULTS: Plasma t-tau levels were higher in mutation carriers below the age of 50 compared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respectively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in mutation carriers compared to controls. Plasma NfL concentrations were higher in mutation carriers compared to controls, and differences were greater for younger carriers. The Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic patients (p < 0.001). CONCLUSION: Our results suggest that tau might be a marker of early disease stages in SCA3. NfL can discriminate mutation carriers from controls and is associated with different clinical variables. Longitudinal studies are required to confirm their potential role as biomarkers in clinical trials.


Asunto(s)
Enfermedad de Machado-Joseph , Proteínas de Neurofilamentos , Proteínas tau , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Cerebelo/química , Heterocigoto , Humanos , Enfermedad de Machado-Joseph/sangre , Enfermedad de Machado-Joseph/líquido cefalorraquídeo , Enfermedad de Machado-Joseph/genética , Ratones , Ratones Transgénicos , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
11.
Neurobiol Dis ; 162: 105578, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871736

RESUMEN

Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity. We performed whole-exome sequencing in a discovery sample of four age at onset concordant and four discordant first-degree relative pairs of Azorean patients, to identify candidate variants which genotypes differed for each discordant pair but were shared in each concordant pair. Variants identified by this approach were then tested in an independent multi-origin cohort of 282 MJD patients. Whole-exome sequencing identified 233 candidate variants, from which 82 variants in 53 genes were prioritized for downstream analysis. Eighteen disease-modifying pathways were identified; two of the most enriched pathways were relevant for the nervous system, namely the neuregulin signaling and the agrin interactions at neuromuscular junction. Variants at PARD3, NFKB1, CHD5, ACTG1, CFAP57, DLGAP2, ITGB1, DIDO1 and CERS4 modulate age at onset in MJD, with those identified in CFAP57, ACTG1 and DIDO1 showing consistent effects across cohorts of different geographical origins. Network analyses of the nine novel MJD modifiers highlighted several important molecular interactions, including genes/proteins previously related with MJD pathogenesis, namely between ACTG1/APOE and VCP/ITGB1. We describe novel pathways, modifiers, and their interaction partners, providing a broad molecular portrait of age at onset modulation to be further exploited as new disease-modifying targets for MJD and related diseases.


Asunto(s)
Enfermedad de Machado-Joseph , Edad de Inicio , Alelos , ADN Helicasas/genética , Genotipo , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/genética , Secuenciación del Exoma
12.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34397117

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ataxina-3/genética , Estudios Transversales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Péptidos
14.
Aging (Albany NY) ; 12(6): 4742-4756, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32205469

RESUMEN

Machado-Joseph disease (MJD/SCA3) is the most common form of dominantly inherited ataxia worldwide. The disorder is caused by an expanded CAG repeat in the ATXN3 gene. Past studies have revealed that the length of the expansion partly explains the disease age at onset (AO) variability of MJD, which is confirmed in this study (Pearson's correlation coefficient R2 = 0.62). Using a total of 786 MJD patients from five different geographical origins, a genome-wide association study (GWAS) was conducted to identify additional AO modifying factors that could explain some of the residual AO variability. We identified nine suggestively associated loci (P < 1 × 10-5). These loci were enriched for genes involved in vesicle transport, olfactory signaling, and synaptic pathways. Furthermore, associations between AO and the TRIM29 and RAG genes suggests that DNA repair mechanisms might be implicated in MJD pathogenesis. Our study demonstrates the existence of several additional genetic factors, along with CAG expansion, that may lead to a better understanding of the genotype-phenotype correlation in MJD.


Asunto(s)
Enfermedad de Machado-Joseph/genética , Adulto , Edad de Inicio , Ataxina-3/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Machado-Joseph/epidemiología , Masculino , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética
15.
J Mol Neurosci ; 69(3): 450-455, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31286408

RESUMEN

Alongside with the emergent clinical trials for Machado-Joseph disease/Spinocerebellar ataxia type 3 (MJD/SCA3) comes the need to identify molecular biomarkers of disease that can be tracked throughout the trial. MJD is an autosomal dominant neurodegenerative disorder caused by expansion of a CAG repeat in the coding region of the ATXN3 gene. Previous findings indicate the potential of transcriptional alterations in blood of MJD patients as biomarkers of disease. Accurate quantification of gene expression levels by quantitative real-time PCR (qPCR) depends on data normalization, usually performed using reference genes. Because the expression level of routinely used housekeeping genes may vary in multiple biological and experimental conditions, reference gene controls should be validated in each specific experimental design. Here, we aimed to evaluate the expression behavior of five housekeeping genes previously reported as stably expressed in peripheral blood of patients from several disorders-peptidylprolyl isomerase B (PPIB), TNF receptor associated protein 1 (TRAP1), beta-2-microglobulin (B2M), 2,4-dienoyl-CoA reductase 1 (DECR1), and folylpolyglutamate synthase (FPGS). Expression levels of these five genes were assessed by qPCR in blood from MJD subjects (preataxic and patients) and matched controls. While all housekeeping genes, here studied, were stably expressed in our sets of samples, TRAP1 showed to be the most stable gene by NormFinder and BestKeeper. We, therefore, conclude that any of these genes could be used as reference gene in future qPCR studies using blood samples from MJD subjects.


Asunto(s)
Expresión Génica , Enfermedad de Machado-Joseph/genética , Adulto , Estudios de Casos y Controles , Ciclofilinas/sangre , Ciclofilinas/genética , Femenino , Proteínas HSP90 de Choque Térmico/sangre , Proteínas HSP90 de Choque Térmico/genética , Humanos , Enfermedad de Machado-Joseph/sangre , Masculino , Persona de Mediana Edad , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/sangre , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Péptido Sintasas/sangre , Péptido Sintasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Adulto Joven , Microglobulina beta-2/sangre , Microglobulina beta-2/genética
16.
Mol Neurobiol ; 56(1): 119-124, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29679261

RESUMEN

Molecular alterations reflecting pathophysiologic changes thought to occur many years before the clinical onset of Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), a late-onset polyglutamine disorder, remain unidentified. The absence of molecular biomarkers hampers clinical trials, which lack sensitive measures of disease progression, preventing the identification of events occurring prior to clinical onset. Our aim was to analyse the mtDNA content and the amount of the common deletion (m.8482_13460del4977) in a cohort of 16 preataxic MJD mutation carriers, 85 MJD patients and 101 apparently healthy age-matched controls. Relative expression levels of RPPH1, MT-ND1 and MT-ND4 genes were assessed by quantitative real-time PCR. The mtDNA content was calculated as the difference between the expression levels of a mitochondrial gene (MT-ND1) and a nuclear gene (RPPH1); the amount of mtDNA common deletion was calculated as the difference between expression levels of a deleted (MT-ND4) and an undeleted (MT-ND1) mitochondrial genes. mtDNA content in MJD carriers was similar to that of healthy age-matched controls, whereas the percentage of the common deletion was significantly increased in MJD subjects, and more pronounced in the preclinical stage (p < 0.05). The BCL2/BAX ratio was decreased in preataxic carriers compared to controls, suggesting that the mitochondrial-mediated apoptotic pathway is altered in MJD. Our findings demonstrate for the first time that accumulation of common deletion starts in the preclinical stage. Such early alterations provide support to the current understanding that any therapeutic intervention in MJD should start before the overt clinical phenotype.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Eliminación de Secuencia/genética , Adulto , Estudios de Casos y Controles , ADN Mitocondrial/sangre , Femenino , Humanos , Enfermedad de Machado-Joseph/sangre , Masculino , Adulto Joven
17.
Adv Exp Med Biol ; 1049: 309-319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29427111

RESUMEN

Whereas spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) remains an untreatable disorder, disease-modifying compounds have begun being tested in the context of clinical trials; their success is dependent on the sensitivity of the methods used to measure subtle therapeutic benefits. Thus, efforts are being made to propose a battery of potential outcome measures, including molecular biomarkers (MBs), which remain to be identified; MBs are particularly pertinent if SCA3 trials are expected to enroll preataxic subjects. Recently, promising candidate MBs of SCA3 have emerged from gene expression studies. In this chapter we provide a synthesis of the cross-sectional and pilot longitudinal studies of blood-based transcriptional biomarkers conducted so far. Other alterations with potential to track the progression of SCA3, such as those involving mitochondrial DNA (mtDNA) are also referred. It is expected that a set of molecular biomarkers can be identified; these will be used in complementarity with clinical and imaging markers to fully track SCA3, from its preataxic phase to the disease stage.


Asunto(s)
ADN Mitocondrial , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Enfermedad de Machado-Joseph , Biomarcadores/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Enfermedad de Machado-Joseph/diagnóstico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo
18.
Cerebellum ; 16(5-6): 957-963, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28699106

RESUMEN

Autophagy is especially important in disorders where accumulation of the mutant protein is a hallmark, such as the Machado-Joseph disease/spinocerebellar ataxia type 3 (MJD/SCA3). We analyzed the promoter of the BECN1 gene, whose overexpression has been reported to exert neuroprotective effects in MJD, with the aim of finding variants that could be associated with expression levels of beclin-1 and could be tested as modifiers of onset and disease severity. A fragment encompassing the BECN1 promoter was sequenced in 95 MJD subjects and 120 controls. The impact of the variation detected on transcription factors (TFs) binding affinity was evaluated in silico and inferences concerning levels of expression were confirmed by fluorescence-based quantitative real-time PCR in a subset of 28 MJD subjects and 26 controls. Four previously described (rs60221525, rs116943570, rs34882610, and rs34037822) and one novel (c.-933delG) variants were identified. In silico analysis performed for the most frequent variants-rs60221525 C allele and rs116943570 T allele-predicted an impact of the presence of these alleles on TF binding affinity. BECN1 expression levels were in agreement with the in silico predictions, showing a tendency for decreased levels in samples with the rs60221525 C allele and for increased levels in samples with the rs116943570 T allele. MJD patients carrying the rs60221525 C allele presented a tendency for earlier estimated age at onset. Moreover, patients with the rs60221525 C allele presented a more severe clinical picture, compared to patients without this allele. The analysis of a larger number of patients from different cohorts, currently unavailable, would be required to confirm these results.


Asunto(s)
Beclina-1/genética , Predisposición Genética a la Enfermedad , Variación Genética , Enfermedad de Machado-Joseph/genética , Regiones Promotoras Genéticas , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Autofagia/genética , Beclina-1/metabolismo , Simulación por Computador , Femenino , Expresión Génica , Estudios de Asociación Genética , Humanos , Enfermedad de Machado-Joseph/metabolismo , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Adulto Joven
19.
Neuromolecular Med ; 19(1): 41-45, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27246313

RESUMEN

Age at onset in spinocerebellar ataxia type 3 (SCA3/MJD) is incompletely explained by the size of the CAG tract at the ATXN3 gene, implying the existence of genetic modifiers. A role of inflammation in SCA3 has been postulated, involving altered cytokines levels; promoter variants leading to alterations in cytokines expression could influence onset. Using blood from 86 SCA3 patients and 106 controls, this work aimed to analyse promoter variation of four cytokines (IL1A, IL1B, IL6 and TNF) and to investigate the association between variants detected and their transcript levels, evaluated by quantitative PCR. Moreover, the effect of APOE isoforms, known to modulate cytokines, was investigated. Correlations between cytokine variants and onset were tested; the cumulative modifier effects of cytokines and APOE were analysed. Patients carrying the IL6*C allele had a significant earlier onset (4 years in average) than patients carrying the G allele, in agreement with lower mRNA levels produced by IL6*C carriers. The presence of APOE*ɛ2 allele seems to anticipate onset in average 10 years in patients carrying the IL6*C allele; a larger number of patients will be needed to confirm this result. These results highlight the pertinence of conducting further research on the role of cytokines as SCA3 modulators, pointing to the presence of shared mechanisms involving IL6 and APOE.


Asunto(s)
Apolipoproteínas E/fisiología , Interleucina-1alfa/genética , Interleucina-1beta/genética , Interleucina-6/genética , Enfermedad de Machado-Joseph/genética , Regiones Promotoras Genéticas/genética , Factor de Necrosis Tumoral alfa/genética , Adulto , Edad de Inicio , Alelos , Apolipoproteína E2/sangre , Apolipoproteína E2/fisiología , Apolipoproteínas E/sangre , Ataxina-3/genética , Femenino , Regulación de la Expresión Génica , Genotipo , Humanos , Inflamación , Interleucina-1alfa/sangre , Interleucina-1alfa/fisiología , Interleucina-1beta/sangre , Interleucina-1beta/fisiología , Interleucina-6/sangre , Interleucina-6/fisiología , Enfermedad de Machado-Joseph/sangre , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Polimorfismo de Longitud del Fragmento de Restricción , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Represoras/genética , Repeticiones de Trinucleótidos , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/fisiología , Adulto Joven
20.
Mol Diagn Ther ; 20(6): 617-622, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27647319

RESUMEN

INTRODUCTION AND OBJECTIVE: Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder for which the routine molecular testing is based on PCR and automated capillary electrophoresis. When only a normal allele is detected by standard PCR, the hypothesis of a failed amplification of the expanded allele must be raised. In such cases, complementary techniques such as Southern Blot or triplet repeat primed PCR (TP-PCR) have to be applied. For SCA3, TP-PCR is implemented in some diagnostic laboratories, but a tested protocol has yet to be published. The purpose of this study was to develop and test a TP-PCR protocol for SCA3. METHODS: Sixty-five blood samples previously genotyped by standard PCR were used in the TP-PCR assay. Fourteen buccal swab samples were also analyzed to confirm the robustness of the technique. The reproducibility of the TP-PCR was evaluated by analyzing all samples in a second laboratory. RESULTS: The results obtained by TP-PCR confirmed the previous PCR results for 64 blood samples; in one sample an expanded allele, previously undetected by PCR, was identified. The results obtained for the buccal swab samples were totally concordant with those obtained for blood. Furthermore, the results obtained in the alternative laboratory were in full agreement with the results obtained in our study. CONCLUSION: The present TP-PCR protocol developed for SCA3 should constitute a reliable complementary technique to overcome the limitations of standard PCR.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/diagnóstico , Enfermedad de Machado-Joseph/genética , Reacción en Cadena de la Polimerasa/métodos , Proteínas Represoras/genética , Repeticiones de Trinucleótidos/genética , Alelos , Ataxina-3/metabolismo , Técnicas de Genotipaje , Humanos , Técnicas de Diagnóstico Molecular , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...