Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proteins ; 77(1): 52-61, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19382204

RESUMEN

Hydrogen atoms are not typically observable in X-ray crystal structures, but inferring their locations is often important in structure-based drug design. In addition, protonation states of the protein can change in response to ligand binding, as can the orientations of OH groups, a subtle form of "induced fit." We implement and evaluate an automated procedure for optimizing polar hydrogens in protein-binding sites in complex with ligands. Specifically, we apply the previously described Independent Cluster Decomposition Algorithm (ICDA) algorithm (Li et al., Proteins 2007;66:824-837), which assigns the ionization states of titratable residues, the amide orientations of Asn/Gln side chains, the imidazole ring orientation in His, and the orientations of OH/SH groups, in a unified algorithm. We test the utility of this method for identifying nativelike ligand poses using 247 protein-ligand complexes from an established database of docked decoys. Pose selection is performed with a physics-based scoring function based on a molecular mechanics energy function and a Generalized Born implicit solvent model. The use of the ICDA receptor preparation protocol, implemented with no knowledge of the native ligand pose, increases the accuracy of pose selection significantly, with the average RMSD over all complexes decreasing from 2.7 to 1.5 A when applying ICDA. Large improvements are seen for specific classes of binding sites with titratable groups, such as aspartyl proteases.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Proteínas/química , Cristalografía por Rayos X , Hidrógeno/química , Unión Proteica
2.
Proteins ; 69(1): 69-74, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17588228

RESUMEN

The ability to determine the structure of a protein in solution is a critical tool for structural biology, as proteins in their native state are found in aqueous environments. Using a physical chemistry based prediction protocol, we demonstrate the ability to reproduce protein loop geometries in experimentally derived solution structures. Predictions were run on loops drawn from (1)NMR entries in the Protein Databank (PDB), and from (2) the RECOORD database in which NMR entries from the PDB have been standardized and re-refined in explicit solvent. The predicted structures are validated by comparison with experimental distance restraints, a test of structural quality as defined by the WHAT IF structure validation program, root mean square deviation (RMSD) of the predicted loops to the original structural models, and comparison of precision of the original and predicted ensembles. Results show that for the RECOORD ensembles, the predicted loops are consistent with an average of 95%, 91%, and 87% of experimental restraints for the short, medium and long loops respectively. Prediction accuracy is strongly affected by the quality of the original models, with increases in the percentage of experimental restraints violated of 2% for the short loops, and 9% for both the medium and long loops in the PDB derived ensembles. We anticipate the application of our protocol to theoretical modeling of protein structures, such as fold recognition methods; as well as to experimental determination of protein structures, or segments, for which only sparse NMR restraint data is available.


Asunto(s)
Algoritmos , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas/química , Biología Computacional , Simulación por Computador , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Reproducibilidad de los Resultados
3.
J Am Chem Soc ; 129(4): 820-7, 2007 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-17243818

RESUMEN

Post-translational phosphorylation plays a key role in regulating protein function. Here, we provide a quantitative assessment of the relative strengths of hydrogen bonds involving phosphorylated amino acid side chains (pSer, pAsp) with several common donors (Arg, Lys, and backbone amide groups). We utilize multiple levels of theory, consisting of explicit solvent molecular dynamics, implicit solvent molecular mechanics, and quantum mechanics with a self-consistent reaction field treatment of solvent. Because the approximately 6 pKa of phosphate suggests that -1 and -2 charged species may coexist at physiological pH, hydrogen bonds involving both protonated and deprotonated phosphates for all donor-acceptor pairs are considered. Multiple bonding geometries for the charged-charged interactions are also considered. Arg is shown to be capable of substantially stronger salt bridges with phosphorylated side chains than Lys. A pSer hydrogen-bond acceptor tends to form more stable interactions than a pAsp acceptor. The effect of phosphate protonation state on the strengths of the hydrogen bonds is remarkably subtle, with a more pronounced effect on pAsp than on pSer.


Asunto(s)
Aminoácidos/química , Simulación por Computador , Procesamiento Proteico-Postraduccional , Amidas/química , Ácido Aspártico/química , Ácido Glutámico/química , Enlace de Hidrógeno , Fosforilación , Serina/química , Cloruro de Sodio/química
4.
Proteins ; 60(1): 103-9, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15852307

RESUMEN

The effects of crystal packing on protein loop structures are examined by (1) a comparison of loops in proteins that have been crystallized in alternate packing arrangements, and (2) theoretical prediction of loops both with and without the inclusion of the crystal environment. Results show that in a minority of cases, loop geometries are dependent on crystal packing effects. Explicit representation of the crystal environment in a loop prediction algorithm can be used to model these effects and to reconstruct the structures, and relative energies, of a loop in alternative packing environments. By comparing prediction results with and without the inclusion of the crystal environment, the loop prediction algorithm can further be used to identify cases in which a crystal structure does not represent the most stable state of a loop in solution. We anticipate that this capability has implications for structural biology.


Asunto(s)
Algoritmos , Cristalografía por Rayos X/métodos , Conformación Proteica , Proteínas/química , Biología Computacional/métodos , Simulación por Computador , Bases de Datos de Proteínas , Modelos Moleculares
5.
Proteins ; 55(2): 351-67, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15048827

RESUMEN

The application of all-atom force fields (and explicit or implicit solvent models) to protein homology-modeling tasks such as side-chain and loop prediction remains challenging both because of the expense of the individual energy calculations and because of the difficulty of sampling the rugged all-atom energy surface. Here we address this challenge for the problem of loop prediction through the development of numerous new algorithms, with an emphasis on multiscale and hierarchical techniques. As a first step in evaluating the performance of our loop prediction algorithm, we have applied it to the problem of reconstructing loops in native structures; we also explicitly include crystal packing to provide a fair comparison with crystal structures. In brief, large numbers of loops are generated by using a dihedral angle-based buildup procedure followed by iterative cycles of clustering, side-chain optimization, and complete energy minimization of selected loop structures. We evaluate this method by using the largest test set yet used for validation of a loop prediction method, with a total of 833 loops ranging from 4 to 12 residues in length. Average/median backbone root-mean-square deviations (RMSDs) to the native structures (superimposing the body of the protein, not the loop itself) are 0.42/0.24 A for 5 residue loops, 1.00/0.44 A for 8 residue loops, and 2.47/1.83 A for 11 residue loops. Median RMSDs are substantially lower than the averages because of a small number of outliers; the causes of these failures are examined in some detail, and many can be attributed to errors in assignment of protonation states of titratable residues, omission of ligands from the simulation, and, in a few cases, probable errors in the experimentally determined structures. When these obvious problems in the data sets are filtered out, average RMSDs to the native structures improve to 0.43 A for 5 residue loops, 0.84 A for 8 residue loops, and 1.63 A for 11 residue loops. In the vast majority of cases, the method locates energy minima that are lower than or equal to that of the minimized native loop, thus indicating that sampling rarely limits prediction accuracy. The overall results are, to our knowledge, the best reported to date, and we attribute this success to the combination of an accurate all-atom energy function, efficient methods for loop buildup and side-chain optimization, and, especially for the longer loops, the hierarchical refinement protocol.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Proteínas/química , Algoritmos , Cristalización , Reproducibilidad de los Resultados , Proyectos de Investigación , Homología de Secuencia de Aminoácido , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...