Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Commun ; 14(1): 8505, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129375

RESUMEN

Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.


Asunto(s)
Memoria Episódica , Neocórtex , Humanos , Aprendizaje , Hipocampo , Recuerdo Mental , Ritmo Teta
2.
Neuropsychologia ; 191: 108727, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939874

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia, characterized by early memory impairments and gradual worsening of daily functions. AD-related pathology, such as amyloid-beta (Aß) plaques, begins to accumulate many years before the onset of clinical symptoms. Predicting risk for AD via related pathology is critical as the preclinical stage could serve as a therapeutic time window, allowing for early management of the disease and reducing health and economic costs. Current methods for detecting AD pathology, however, are often expensive and invasive, limiting wide and easy access to a clinical setting. A non-invasive, cost-efficient platform, such as computerized cognitive tests, could be potentially useful to identify at-risk individuals as early as possible. In this study, we examined the diagnostic value of an episodic memory task, the mnemonic discrimination task (MDT), for predicting risk of cognitive impairment or Aß burden. We constructed a random forest classification algorithm, utilizing MDT performance metrics and various neuropsychological test scores as input features, and assessed model performance using area under the curve (AUC). Models based on MDT performance metrics achieved classification results with an AUC of 0.83 for cognitive status and an AUC of 0.64 for Aß status. Our findings suggest that mnemonic discrimination function may be a useful predictor of progression to prodromal AD or increased risk of Aß load, which could be a cost-efficient, noninvasive cognitive testing solution for potentially wide-scale assessment of AD pathological and cognitive risk.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Memoria Episódica , Humanos , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Cognición , Disfunción Cognitiva/psicología , Tomografía de Emisión de Positrones
3.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790541

RESUMEN

Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.

4.
Nature ; 621(7978): 381-388, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648849

RESUMEN

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Asunto(s)
Hipocampo , Vías Nerviosas , Orexinas , Humanos , Índice de Masa Corporal , Estudios de Cohortes , Señales (Psicología) , Electrofisiología , Potenciales Evocados/fisiología , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Conducta Alimentaria , Alimentos , Hipocampo/anatomía & histología , Hipocampo/citología , Hipocampo/metabolismo , Obesidad/metabolismo , Orexinas/metabolismo
5.
Entropy (Basel) ; 23(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34828132

RESUMEN

Multichannel EEGs were obtained from healthy participants in the eyes-closed no-task condition and in the eyes-open condition (where the alpha component is typically abolished). EEG dynamics in the two conditions were quantified with two related binary Lempel-Ziv measures of the first principal component, and with three measures of integrated information, including the more recently proposed integrated synergy. Both integrated information and integrated synergy with model order p=1 had greater values in the eyes-closed condition. When the model order of integrated synergy was determined with the Bayesian Information Criterion, this pattern was reversed, and in line with the other measures, integrated synergy was greater in the eyes-open condition. Eyes-open versus eyes-closed separation was quantified by calculating the between-condition effect size. The Lempel-Ziv complexity of the first principal component showed greater separation than the measures of integrated information.

6.
Behav Sci (Basel) ; 11(5)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063229

RESUMEN

Using healthy adult participants, seven measures of heart rate variability were obtained simultaneously from four devices in five behavioral conditions. Two devices were ECG-based and two utilized photoplethysmography. The 140 numerical values (measure, condition, device) are presented. The comparative operational reliability of the four devices was assessed, and it was found that the two ECG-base devices were more reliable than the photoplethysmographic devices. The interchangeability of devices was assessed by determining the between-device Limits of Agreement. Intraclass correlation coefficients were determined and used to calculate the standard error of measurement and the Minimal Detectable Difference. The Minimal Detectable Difference, MDD, quantifies the smallest statistically significant change in a measure and is therefore critical when HRV measures are used longitudinally to assess treatment response or disease progression.

8.
Front Hum Neurosci ; 13: 377, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708761

RESUMEN

Attenuation in P300 amplitude has been characterized in a wide range of neurological and psychiatric disorders such as dementia, schizophrenia, and posttraumatic stress disorder (PTSD). However, it is unclear whether the attenuation observed in the averaged event-related potential (ERP) is due to the reduction of neural resources available for cognitive processing, the decreased consistency of cognitive resource allocation, or the increased instability of cognitive processing speed. In this study, we investigated this problem by estimating single-trial P300 amplitude and latency using a modified Woody filter and examined the relation between amplitudes and latencies from the single-trial level to the averaged ERP level. ERPs were recorded from 30 military service members returning from combat deployment at two time points separated by 6 or 12 months. A conventional visual oddball task was used to elicit P300. We observed that the extent of changes in the within-subject average P300 amplitude over time was significantly correlated with the amount of change in three single-trial measures: (1) the latency variance of the single-trial P300 (r = -0.440, p = 0.0102); (2) the percentage of P300-absent trials (r = -0.488, p = 0.005); and (3) the consistent variation of the single-trial amplitude (r = 0.571, p = 0.0022). These findings suggest that there are multiple underlying mechanisms on the single-trial level that contribute to the changes in amplitudes seen at the averaged ERP level. The changes between the first and second assessments were quantified with the intraclass correlation coefficient, the standard error of measurement and the minimal detectable difference. The unique population, the small sample size and the large fraction of participants lost to follow up precludes generalizations of these measures of change to other populations.

9.
Chaos ; 29(8): 083113, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472514

RESUMEN

Information dynamics provides a broad set of measures for characterizing how a dynamical system stores, processes, and transmits information. While estimators for these measures are commonly used in applications, the statistical properties of these estimators for finite time series are not well understood. In particular, the precision of a given estimate is generally unknown. We develop confidence intervals for generic information-dynamic parameters using a bootstrap procedure. The bootstrap procedure uses an echo state network, a particular instance of a reservoir computer, as a simulator to generate bootstrap samples from a given time series. We perform a Monte Carlo analysis to investigate the performance of the bootstrap confidence intervals in terms of their coverage and expected lengths with two model systems and compare their performance to a simulator based on the random analog predictor. We find that our bootstrap procedure generates confidence intervals with nominal, or near nominal, coverage of the information-dynamic measures, with smaller expected length than the random analog predictor-based confidence intervals. Finally, we demonstrate the applicability of the confidence intervals for characterizing the information dynamics of a time series of sunspot counts.

10.
J Psychiatr Res ; 101: 5-13, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29522937

RESUMEN

Military service members (SMs) returning from combat are at high risk of developing neuropsychiatric conditions such as posttraumatic stress disorder (PTSD) and major depression. Symptom dynamics following reintegration into civilian life may be magnified over time such that some SMs present with delayed onset and may not reach a diagnostic threshold for months to years. Monitoring the trajectory of mental health in the aftermath of combat trauma can therefore be particularly important in enhancing diagnosis. In this study, we investigated the possible utility of the P300 event-related potential (ERP) as an objective marker for monitoring post-trauma mental health. SMs recently returned from a combat deployment were recruited to undergo a baseline assessment, with subsequent follow-up assessment at 6 or 12 months later. At each assessment, ERPs were recorded using a conventional visual oddball task and a set of psychological scores assessing PTSD, depression, and psychosocial functioning were obtained. We observed that the individuals with overall improved psychological scores at follow-up had increased P300 amplitude and shortened P300 latency, and the individuals with overall worsened psychological scores at follow-up had prolonged P300 latency. The degree of change in aggregate psychological score was significantly correlated with the magnitude of change in P300 amplitude (r = -0.72, p < 0.0001) and latency (r = 0.42, p = 0.0201). These findings suggest that the P300 may be utilized as a quantitative biomarker for tracking the changes of mental health longitudinally. It may offer clinicians an objective tool for the assessment of the dynamics of mental health following trauma, and perhaps also for monitoring recovery during treatment.


Asunto(s)
Trastornos de Combate/diagnóstico , Potenciales Relacionados con Evento P300/fisiología , Personal Militar , Trastornos por Estrés Postraumático/diagnóstico , Adulto , Biomarcadores , Trastornos de Combate/fisiopatología , Electroencefalografía , Femenino , Humanos , Estudios Longitudinales , Masculino , Trastornos por Estrés Postraumático/fisiopatología , Adulto Joven
11.
Front Neurol ; 8: 571, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163337

RESUMEN

Mild traumatic brain injury (mTBI) has been firmly associated with disrupted white matter integrity due to induced white matter damage and degeneration. However, comparatively less is known about the changes of the intrinsic functional connectivity mediated via neural synchronization in the brain after mTBI. Moreover, despite the presumed link between structural and functional connectivity, no existing studies in mTBI have demonstrated clear association between the structural abnormality of white matter axons and the disruption of neural synchronization. To investigate these questions, we recorded resting state EEG and diffusion tensor imaging (DTI) from a cohort of military service members. A newly developed synchronization measure, the weighted phase lag index was applied on the EEG data for estimating neural synchronization. Fractional anisotropy was computed from the DTI data for estimating white matter integrity. Fifteen service members with a history of mTBI within the past 3 years were compared to 22 demographically similar controls who reported no history of head injury. We observed that synchronization at low-gamma frequency band (25-40 Hz) across scalp regions was significantly decreased in mTBI cases compared with controls. The synchronization in theta (4-7 Hz), alpha (8-13 Hz), and beta (15-23 Hz) frequency bands were not significantly different between the two groups. In addition, we found that across mTBI cases, the disrupted synchronization at low-gamma frequency was significantly correlated with the white matter integrity of the inferior cerebellar peduncle, which was also significantly reduced in the mTBI group. These findings demonstrate an initial correlation between the impairment of white matter integrity and alterations in EEG synchronization in the brain after mTBI. The results also suggest that disruption of intrinsic neural synchronization at low-gamma frequency may be a characteristic functional pathology following mTBI and may prove useful for developing better methods of diagnosis and treatment.

12.
Phys Rev E ; 96(2-1): 022121, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28950488

RESUMEN

Since its original formulation in 2000, transfer entropy has become an invaluable tool in the toolbox of nonlinear dynamicists working with empirical data. Transfer entropy and its generalizations provide a precise definition of uncertainty and information transfer that are central to the coupled systems studied in nonlinear science. However, a canonical definition of state-dependent transfer entropy has yet to be introduced. We introduce a candidate measure, the specific transfer entropy, and compare its properties to both total and local transfer entropy. Specific transfer entropy makes possible both state- and time-resolved analysis of the predictive impact of a candidate input system on a candidate output system. We also present principled methods for estimating total, local, and specific transfer entropies from empirical data. We demonstrate the utility of specific transfer entropy and our proposed estimation procedures with two model systems, and find that specific transfer entropy provides more, and more easily interpretable, information about an input-output system compared to currently existing methods.

13.
Front Psychiatry ; 8: 71, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28555113

RESUMEN

The objective of this research project is the identification of a physiological prodrome of post-traumatic stress disorder (PTSD) that has a reliability that could justify preemptive treatment in the sub-syndromal state. Because abnormalities in event-related potentials (ERPs) have been observed in fully expressed PTSD, the possible utility of abnormal ERPs in predicting delayed-onset PTSD was investigated. ERPs were recorded from military service members recently returned from Iraq or Afghanistan who did not meet PTSD diagnostic criteria at the time of ERP acquisition. Participants (n = 65) were followed for up to 1 year, and 7.7% of the cohorts (n = 5) were PTSD-positive at follow-up. The initial analysis of the receiver operating characteristic (ROC) curve constructed using ERP metrics was encouraging. The average amplitude to target stimuli gave an area under the ROC curve of greater than 0.8. Classification based on the Youden index, which is determined from the ROC, gave positive results. Using average target amplitude at electrode Cz yielded Sensitivity = 0.80 and Specificity = 0.87. A more systematic statistical analysis of the ERP data indicated that the ROC results may simply represent a fortuitous consequence of small sample size. Predicted error rates based on the distribution of target ERP amplitudes approached those of random classification. A leave-one-out cross validation using a Gaussian likelihood classifier with Bayesian priors gave lower values of sensitivity and specificity. In contrast with the ROC results, the leave-one-out classification at Cz gave Sensitivity = 0.65 and Specificity = 0.60. A bootstrap calculation, again using the Gaussian likelihood classifier at Cz, gave Sensitivity = 0.59 and Specificity = 0.68. Two provisional conclusions can be offered. First, the results can only be considered preliminary due to the small sample size, and a much larger study will be required to assess definitively the utility of ERP prodromes of PTSD. Second, it may be necessary to combine ERPs with other biomarkers in a multivariate metric to produce a prodrome that can justify preemptive treatment.

14.
Cureus ; 7(7): e293, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26251769

RESUMEN

Traumatic brain injury, depression and posttraumatic stress disorder (PTSD) are neurocognitive syndromes often associated with impairment of physical and mental health, as well as functional status. These syndromes are also frequent in military service members (SMs) after combat, although their presentation is often delayed until months after their return. The objective of this prospective cohort study was the identification of independent predictors of neurocognitive syndromes upon return from deployment could facilitate early intervention to prevent disability. We completed a comprehensive baseline assessment, followed by serial evaluations at three, six, and 12 months, to assess for new-onset PTSD, depression, or postconcussive syndrome (PCS) in order to identify baseline factors most strongly associated with subsequent neurocognitive syndromes. On serial follow-up, seven participants developed at least one neurocognitive syndrome: five with PTSD, one with depression and PTSD, and one with PCS. On univariate analysis, 60 items were associated with syndrome development at p < 0.15. Decision trees and ensemble tree multivariate models yielded four common independent predictors of PTSD: right superior longitudinal fasciculus tract volume on MRI; resting state connectivity between the right amygdala and left superior temporal gyrus (BA41/42) on functional MRI; and single nucleotide polymorphisms in the genes coding for myelin basic protein as well as brain-derived neurotrophic factor. Our findings require follow-up studies with greater sample size and suggest that neuroimaging and molecular biomarkers may help distinguish those at high risk for post-deployment neurocognitive syndromes.

15.
Front Hum Neurosci ; 9: 11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25698950

RESUMEN

Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.

16.
J Neurotrauma ; 32(16): 1281-6, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25588122

RESUMEN

A sequential process for comparison testing of noninvasive neuroassessment devices is presented. Comparison testing of devices in a clinical population should be preceded by computational research and reliability testing with healthy populations, as opposed to proceeding immediately to testing with clinical participants. A five-step process is outlined as follows: 1. Complete a preliminary literature review identifying candidate measures. 2. Conduct systematic simulation studies to determine the computational properties and data requirements of candidate measures. 3. Establish the test-retest reliability of each measure in a healthy comparison population and the clinical population of interest. 4. Investigate the clinical validity of reliable measures in appropriately defined clinical populations. 5. Complete device usability assessment (weight, simplicity of use, cost effectiveness, ruggedness) only for devices and measures that are promising after steps 1 through 4 are completed. Usability may be considered throughout the device evaluation process but such considerations are subordinate to the higher priorities addressed in steps 1 through 4.


Asunto(s)
Investigación Biomédica/instrumentación , Equipos y Suministros/normas , Estudios de Evaluación como Asunto , Neurología/instrumentación , Investigación Biomédica/métodos , Investigación Biomédica/normas , Humanos , Neurología/métodos , Neurología/normas
17.
Neurosci Lett ; 577: 11-5, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24907686

RESUMEN

Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) may share common symptom and neuropsychological profiles in military service members (SMs) following deployment; while a connection between the two conditions is plausible, the relationship between them has been difficult to discern. The intent of this report is to enhance our understanding of the relationship between findings on structural and functional brain imaging and symptoms of PTSD. Within a cohort of SMs who did not meet criteria for PTSD but were willing to complete a comprehensive assessment within 2 months of their return from combat deployment, we conducted a nested case-control analysis comparing those with combat-related mTBI to age/gender-matched controls with diffusion tensor imaging, resting state functional magnetic resonance imaging and a range of psychological measures. We report degraded white matter integrity in those with a history of combat mTBI, and a positive correlation between the white matter microstructure and default mode network (DMN) connectivity. Higher clinician-administered and self-reported subthreshold PTSD symptoms were reported in those with combat mTBI. Our findings offer a potential mechanism through which mTBI may alter brain function, and in turn, contribute to PTSD symptoms.


Asunto(s)
Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Encéfalo/patología , Encéfalo/fisiopatología , Trastornos de Combate/etiología , Trastornos por Estrés Postraumático/etiología , Adulto , Lesiones Encefálicas/complicaciones , Mapeo Encefálico , Estudios de Casos y Controles , Imagen de Difusión Tensora , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Personal Militar/psicología , Índice de Severidad de la Enfermedad , Sustancia Blanca/patología , Adulto Joven
18.
Front Neurol ; 4: 177, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24312072

RESUMEN

The identification and longitudinal assessment of traumatic brain injury presents several challenges. Because these injuries can have subtle effects, efforts to find quantitative physiological measures that can be used to characterize traumatic brain injury are receiving increased attention. The results of this research must be considered with care. Six reasons for cautious assessment are outlined in this paper. None of the issues raised here are new. They are standard elements in the technical literature that describes the mathematical analysis of clinical data. The purpose of this paper is to draw attention to these issues because they need to be considered when clinicians evaluate the usefulness of this research. In some instances these points are demonstrated by simulation studies of diagnostic processes. We take as an additional objective the explicit presentation of the mathematical methods used to reach these conclusions. This material is in the appendices. The following points are made: (1) A statistically significant separation of a clinical population from a control population does not ensure a successful diagnostic procedure. (2) Adding more variables to a diagnostic discrimination can, in some instances, actually reduce classification accuracy. (3) A high sensitivity and specificity in a TBI versus control population classification does not ensure diagnostic successes when the method is applied in a more general neuropsychiatric population. (4) Evaluation of treatment effectiveness must recognize that high variability is a pronounced characteristic of an injured central nervous system and that results can be confounded by either disease progression or spontaneous recovery. A large pre-treatment versus post-treatment effect size does not, of itself, establish a successful treatment. (5) A procedure for discriminating between treatment responders and non-responders requires, minimally, a two phase investigation. This procedure must include a mechanism to discriminate between treatment responders, placebo responders, and spontaneous recovery. (6) A search for prodromes of neuropsychiatric disorders following traumatic brain injury can be implemented with these procedures.

19.
HERD ; 6(3): 126-37, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23817911

RESUMEN

OBJECTIVE: This article aims to explore the future of translational research and its physical design implications for community hospitals and hospitals not attached to large centralized research platforms. BACKGROUND: With a shift in medical services delivery focus to community wellness, continuum of care, and comparative effectiveness research, healthcare research will witness increasing pressure to include community-based practitioners. METHODS: The roundtable discussion group, comprising 14 invited experts from 10 institutions representing the fields of biomedical research, research administration, facility planning and design, facility management, finance, and environmental design research, examined the issue in a structured manner. The discussion was conducted at the Washington Hospital Center, MedStar Health, Washington, D.C. CONCLUSIONS: Institutions outside the AMCs will be increasingly targeted for future research. Three factors are crucial for successful research in non-AMC hospitals: operational culture, financial culture, and information culture. An operating culture geared towards creation, preservation, and protection of spaces needed for research; creative management of spaces for financial accountability; and a flexible information infrastructure at the system level that enables complete link of key programmatic areas to academic IT research infrastructure are critical to success of research endeavors. KEYWORDS: Hospital, interdisciplinary, leadership, planning, work environment.


Asunto(s)
Hospitales , Investigación Biomédica Traslacional , Centros Médicos Académicos , Investigación Biomédica , Arquitectura y Construcción de Instituciones de Salud , Investigación sobre Servicios de Salud , Humanos , Liderazgo , Estados Unidos
20.
Front Neurol ; 4: 91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23885250

RESUMEN

Psychophysiological investigations of traumatic brain injury (TBI) are being conducted for several reasons, including the objective of learning more about the underlying physiological mechanisms of the pathological processes that can be initiated by a head injury. Additional goals include the development of objective physiologically based measures that can be used to monitor the response to treatment and to identify minimally symptomatic individuals who are at risk of delayed-onset neuropsychiatric disorders following injury. Research programs studying TBI search for relationships between psychophysiological measures, particularly ERP (event-related potential) component properties (e.g., timing, amplitude, scalp distribution), and a participant's clinical condition. Moreover, the complex relationships between brain injury and psychiatric disorders are receiving increased research attention, and ERP technologies are making contributions to this effort. This review has two objectives supporting such research efforts. The first is to review evidence indicating that TBI is a significant risk factor for post-injury neuropsychiatric disorders. The second objective is to introduce ERP researchers who are not familiar with neuropsychiatric assessment to the instruments that are available for characterizing TBI, post-concussion syndrome, and psychiatric disorders. Specific recommendations within this very large literature are made. We have proceeded on the assumption that, as is typically the case in an ERP laboratory, the investigators are not clinically qualified and that they will not have access to participant medical records.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...