Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Comp Neurol ; 532(4): e25610, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38605461

RESUMEN

The cerebellum is involved in higher order cognitive function and is susceptible to age-related atrophy. However, limited evidence has directly examined the cerebellum's role in cognitive aging. To interrogate potential substrates of the relationship between cerebellar structure and memory in aging, here we target the Purkinje cells (PCs). The sole output neurons of the cerebellum, PC loss and/or degeneration underlie a variety of behavioral abnormalities. Using a rat model of normal cognitive aging, we immunostained sections through the cerebellum for the PC-specific protein, calbindin-D28k. Although morphometric quantification revealed no significant difference in total PC number as a function of age or cognitive status, regional cell number was a more robust correlate of memory performance in the young cerebellum than in aged animals. Parallel biochemical analysis of PC-specific protein levels in whole cerebellum additionally revealed that calbindin-D28k and Purkinje cell protein-2 (pcp-2) levels were lower selectively in aged rats with spatial memory impairment compared to both young animals and aged rats with intact memory. These results suggest that cognitive aging is associated with cerebellum vulnerability, potentially reflecting disruption of the cerebellum-medial temporal lobe network.


Asunto(s)
Células de Purkinje , Proteína G de Unión al Calcio S100 , Ratas , Animales , Células de Purkinje/metabolismo , Calbindina 1/metabolismo , Proteína G de Unión al Calcio S100/química , Proteína G de Unión al Calcio S100/metabolismo , Cerebelo , Neuronas/metabolismo
2.
Front Hum Neurosci ; 17: 1215291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021223

RESUMEN

Introduction: Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods: Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results: These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion: This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.

3.
J Neurosci ; 43(49): 8425-8441, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37798131

RESUMEN

Basal forebrain (BF) projections to the hippocampus and cortex are anatomically positioned to influence a broad range of cognitive capacities that are known to decline in normal aging, including executive function and memory. Although a long history of research on neurocognitive aging has focused on the role of the cholinergic basal forebrain system, intermingled GABAergic cells are numerically as prominent and well positioned to regulate the activity of their cortical projection targets, including the hippocampus and prefrontal cortex. The effects of aging on noncholinergic BF neurons in primates, however, are largely unknown. In this study, we conducted quantitative morphometric analyses in brains from young adult (6 females, 2 males) and aged (11 females, 5 males) rhesus monkeys (Macaca mulatta) that displayed significant impairment on standard tests that require the prefrontal cortex and hippocampus. Cholinergic (ChAT+) and GABAergic (GAD67+) neurons were quantified through the full rostrocaudal extent of the BF. Total BF immunopositive neuron number (ChAT+ plus GAD67+) was significantly lower in aged monkeys compared with young, largely because of fewer GAD67+ cells. Additionally, GAD67+ neuron volume was greater selectively in aged monkeys without cognitive impairment compared with young monkeys. These findings indicate that the GABAergic component of the primate BF is disproportionally vulnerable to aging, implying a loss of inhibitory drive to cortical circuitry. Moreover, adaptive reorganization of the GABAergic circuitry may contribute to successful neurocognitive outcomes.SIGNIFICANCE STATEMENT A long history of research has confirmed the role of the basal forebrain in cognitive aging. The majority of that work has focused on BF cholinergic neurons that innervate the cortical mantle. Codistributed BF GABAergic populations are also well positioned to influence cognitive function, yet little is known about this prominent neuronal population in the aged brain. In this unprecedented quantitative comparison of both cholinergic and GABAergic BF neurons in young and aged rhesus macaques, we found that neuron number is significantly reduced in the aged BF compared with young, and that this reduction is disproportionately because of a loss of GABAergic neurons. Together, our findings encourage a new perspective on the functional organization of the primate BF in neurocognitive aging.


Asunto(s)
Prosencéfalo Basal , Envejecimiento Cognitivo , Animales , Masculino , Femenino , Prosencéfalo Basal/fisiología , Macaca mulatta , Neuronas Colinérgicas , Envejecimiento/fisiología , Colinérgicos
4.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398407

RESUMEN

Aged rhesus monkeys, like aged humans, show declines in cognitive function. We present cognitive test data from a large sample of male and female rhesus monkeys, 34 young (3.5-13.6 years) and 71 aged (19.9-32.5 years of age at the start of cognitive testing). Monkeys were tested on spatiotemporal working memory (delayed response), visual recognition memory (delayed nonmatching-to-sample), and stimulus-reward association learning (object discrimination), tasks with an extensive evidence base in nonhuman primate neuropsychology. On average, aged monkeys performed worse than young on all three tasks. Acquisition of delayed response and delayed nonmatching-to-sample was more variable in aged monkeys than in young. Performance scores on delayed nonmatching-to-sample and object discrimination were associated with each other, but neither was associated with performance on delayed response. Sex and chronological age were not reliable predictors of individual differences in cognitive outcome among the aged monkeys. These data establish population norms for cognitive tests in young and aged rhesus monkeys in the largest sample reported to date. They also illustrate independence of cognitive aging in task domains dependent on the prefrontal cortex and medial temporal lobe. (181 words).

5.
Neurobiol Aging ; 130: 40-49, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453251

RESUMEN

Aged rhesus monkeys, like aged humans, show declines in cognitive function. We present cognitive test data from a large sample of male and female rhesus monkeys, 34 young (aged 3.5-13.6 years) and 71 aged (aged 19.9-32.5 years at the start of cognitive testing). Monkeys were tested on spatiotemporal working memory (delayed response), visual recognition memory (delayed nonmatching to sample), and stimulus-reward association learning (object discrimination), tasks with an extensive evidence base in nonhuman primate neuropsychology. On average, aged monkeys performed worse than young on all 3 tasks. Acquisition of delayed response and delayed nonmatching to sample was more variable in aged monkeys than in young. Performance scores on delayed nonmatching to sample and object discrimination were associated with each other, but neither was associated with performance on delayed response. Sex and chronological age were not reliable predictors of individual differences in cognitive outcome among the aged monkeys. These data establish population norms for multiple cognitive tests in young and aged rhesus monkeys in the largest sample reported to date. They also illustrate independence of cognitive aging in task domains dependent on the prefrontal cortex and medial temporal lobe.


Asunto(s)
Envejecimiento Cognitivo , Humanos , Animales , Masculino , Femenino , Macaca mulatta , Neuropsicología , Envejecimiento/fisiología , Memoria a Corto Plazo/fisiología
6.
Neuroimage ; 272: 120048, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958620

RESUMEN

The cerebellum is involved in higher-order cognitive functions, e.g., learning and memory, and is susceptible to age-related atrophy. Yet, the cerebellum's role in age-related cognitive decline remains largely unknown. We investigated cross-sectional and longitudinal associations between cerebellar volume and verbal learning and memory. Linear mixed effects models and partial correlations were used to examine the relationship between changes in cerebellum volumes (total cerebellum, cerebellum white matter [WM], cerebellum hemisphere gray matter [GM], and cerebellum vermis subregions) and changes in verbal learning and memory performance among 549 Baltimore Longitudinal Study of Aging participants (2,292 visits). All models were adjusted by baseline demographic characteristics (age, sex, race, education), and APOE e4 carrier status. In examining associations between change with change, we tested an additional model that included either hippocampal (HC), cuneus, or postcentral gyrus (PoCG) volumes to assess whether cerebellar volumes were uniquely associated with verbal learning and memory. Cross-sectionally, the association of baseline cerebellum GM and WM with baseline verbal learning and memory was age-dependent, with the oldest individuals showing the strongest association between volume and performance. Baseline volume was not significantly associated with change in learning and memory. However, analysis of associations between change in volumes and changes in verbal learning and memory showed that greater declines in verbal memory were associated with greater volume loss in cerebellum white matter, and preserved GM volume in cerebellum vermis lobules VI-VII. The association between decline in verbal memory and decline in cerebellar WM volume remained after adjustment for HC, cuneus, and PoCG volume. Our findings highlight that associations between cerebellum volume and verbal learning and memory are age-dependent and regionally specific.


Asunto(s)
Cerebelo , Cognición , Humanos , Estudios Longitudinales , Estudios Transversales , Cerebelo/diagnóstico por imagen , Aprendizaje Verbal , Imagen por Resonancia Magnética
7.
Neurobiol Aging ; 124: 51, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739620
8.
Neurobiol Aging ; 124: 100-103, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653245

RESUMEN

The study of factors, across species, that allow some individuals to age more successfully than others has important implications for individual wellbeing as well as health education, policy and intervention. Design of studies and communication across investigators in this area has been hampered by a diversity of terminology. The Collaboratory on Research Definitions for Reserve and Resilience in Cognitive Aging and Dementia was funded by the National Institute on Aging and established in 2019 as a 3-year process of developing consensus definitions and research guidelines. The proposed Framework is based on an iterative process including 3 annual Workshops, focused workgroups, and input from numerous international investigators. It suggests the overarching term: resilience, and presents operational definitions for 3 concepts: cognitive reserve, brain maintenance, and brain reserve. Twelve pilot studies that integrate these definitions are presented. The use of a common vocabulary and operational definitions will facilitate even greater progress in understanding the factors that are associated with successful aging.


Asunto(s)
Envejecimiento Cognitivo , Reserva Cognitiva , Humanos , Envejecimiento/psicología , Encéfalo
9.
Ageing Res Rev ; 80: 101678, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35781092

RESUMEN

Arc is an effector immediate-early gene that is critical for forming long-term memories. Since its discovery 25 years ago, it has repeatedly surprised us with a number of intriguing properties, including the transport of its mRNA to recently-activated synapses, its master role in bidirectionally regulating synaptic strength, its evolutionary retroviral origins, its ability to mediate intercellular transfer between neurons via extracellular vesicles (EVs), and its exceptional regulation-both temporally and spatially. The current review discusses how Arc has been used as a tool to identify the neural networks involved in cognitive aging and how Arc itself may contribute to cognitive outcome in aging. In addition, we raise several outstanding questions, including whether Arc-containing EVs in peripheral blood might provide a noninvasive biomarker for memory-related synaptic failure in aging, and whether rectifying Arc dysregulation is likely to be an effective strategy for bending the arc of aging toward successful cognitive outcomes.


Asunto(s)
Envejecimiento Cognitivo , Plasticidad Neuronal , Envejecimiento/genética , Proteínas del Citoesqueleto/genética , Humanos , Proteínas del Tejido Nervioso , Plasticidad Neuronal/fisiología , Sinapsis
10.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562955

RESUMEN

The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.


Asunto(s)
Glicósidos Cardíacos , Disfunción Cognitiva , Hipertensión , Animales , Presión Sanguínea , Bufanólidos , Glicósidos Cardíacos/farmacología , Disfunción Cognitiva/etiología , Masculino , Análisis de la Onda del Pulso , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/efectos adversos , Remodelación Vascular
11.
Cereb Cortex ; 32(5): 933-948, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-34448810

RESUMEN

Cognitive aging varies tremendously across individuals and is often accompanied by regionally specific reductions in gray matter (GM) volume, even in the absence of disease. Rhesus monkeys provide a primate model unconfounded by advanced neurodegenerative disease, and the current study used a recognition memory test (delayed non-matching to sample; DNMS) in conjunction with structural imaging and voxel-based morphometry (VBM) to characterize age-related differences in GM volume and brain-behavior relationships. Consistent with expectations from a long history of neuropsychological research, DNMS performance in young animals prominently correlated with the volume of multiple structures in the medial temporal lobe memory system. Less anticipated correlations were also observed in the cingulate and cerebellum. In aged monkeys, significant volumetric correlations with DNMS performance were largely restricted to the prefrontal cortex and striatum. Importantly, interaction effects in an omnibus analysis directly confirmed that the associations between volume and task performance in the MTL and prefrontal cortex are age-dependent. These results demonstrate that the regional distribution of GM volumes coupled with DNMS performance changes across the lifespan, consistent with the perspective that the aged primate brain retains a substantial capacity for structural reorganization.


Asunto(s)
Sustancia Gris , Enfermedades Neurodegenerativas , Envejecimiento , Animales , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Reconocimiento en Psicología
12.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34417282

RESUMEN

Retinoic acid (RA), a metabolite of vitamin A, has many physiological functions, and mounting evidence points to important roles in cognition. In vitro experiments indicate that RA is involved in homeostatic synaptic scaling in the hippocampus, which supports overall network stability during learning. It has been previously determined that disrupted RA signaling in the hippocampus causes deterioration of memory, that RA signaling declines with age in brain, and that application of RA reverses this decline. Here, we explore whether RA signaling is altered in an animal model of neurocognitive aging. We used a Morris water maze protocol to study cognitive decline in aged rats, which assesses hippocampus-dependent spatial memory and reveals substantial interindividual differences in aged animals. Aged unimpaired (AU) rats perform on par with young (Y), while aged impaired (AI) animals exhibit spatial memory deficits. We show that the major substrate for RA, retinol binding protein 4 (RBP4), is decreased in AU rats, and retinol cell surface receptor declines with chronological age. Other affected components of RA signaling include selective increases in AI animals in hippocampal synthesis (RALDH1) and catabolism of RA (CYP26B1), RA receptor α, the RA regulated ionotropic glutamate receptor (GluR1), as well as fragile X mental retardation protein (FMRP). The results support the conclusion that, surprisingly, increased RA signaling in the aged hippocampus is associated with poor cognitive outcome.


Asunto(s)
Hipocampo , Tretinoina , Animales , Cognición , Aprendizaje por Laberinto , Trastornos de la Memoria , Ratas , Memoria Espacial
13.
Brain Stimul ; 14(5): 1219-1225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34400378

RESUMEN

BACKGROUND: Repetitive Transcranial Magnetic Stimulation (rTMS) has shown initial promise in combating age-related cognitive decline and dementia. The nature and severity of cognitive aging, however, varies markedly between individuals. OBJECTIVE/HYPOTHESIS: We hypothesized that the distinct constellation of brain changes responsible for individual differences in cognitive aging might influence the response to rTMS. METHODS: Cognitive effects of rTMS were evaluated using a rat model of cognitive aging in which aged rats are classified as Aged-Impaired (AI) or -Unimpaired (AU) relative to young (Y) according to their performance in the Morris water maze. Several weeks later, following presentation of a sample odor in an olfactory recognition task, rats received either sham (Y, n = 9; AU, n = 8; AI, n = 9) or intermittent Theta Burst Stimulation (Y, n = 8; AU, n = 8; AI, n = 9). Memory was tested 24 h later. RESULTS: Recognition memory in the sham and stimulated conditions depended on pre-treatment cognitive status in the aged rats. Y and AU sham rats displayed robust odor recognition, whereas sham-treated AI rats exhibited no retention. In contrast, rTMS treated AI rats showed robust retention, comparable in magnitude to Y, whereas the AU stimulated scored at chance. CONCLUSION: Our results are consistent with a perspective that the unique neurobiology associated with variability in cognitive aging modulates the response to rTMS. Protocols with documented efficacy in young adults may have unexpected outcomes in aging or neurodegenerative conditions, requiring individualized approaches.


Asunto(s)
Envejecimiento Cognitivo , Estimulación Magnética Transcraneal , Envejecimiento , Animales , Encéfalo , Cognición , Ratas
14.
Mol Neurobiol ; 57(6): 2727-2740, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32333254

RESUMEN

Aging is accompanied by aberrant gene expression that ultimately affects brain plasticity and the capacity to form long-term memories. Immediate-early genes (IEGs) play an active role in these processes. Using a rat model of normal cognitive aging, we found that the expression of Egr1 and c-Fos was associated with chronological age, whereas Arc was more tightly linked to cognitive outcomes in aging. More specifically, constitutive Arc expression was significantly elevated in aged rats with memory impairment compared to cognitively intact aged rats and young adult animals. Since alterations in the neuroepigenetic mechanisms that gate hippocampal gene expression are also associated with cognitive outcome in aging, we narrowed our focus on examining potential epigenetic mechanisms that may lead to aberrant Arc expression. Employing a multilevel analytical approach using bisulfite sequencing, chromatin immunoprecipitations, and micrococcal nuclease digestion, we identified CpG sites in the Arc promoter that were coupled to poor cognitive outcomes in aging, histone marks that were similarly coupled to spatial memory deficits, and nucleosome positioning that also varied depending on cognitive status. Together, these findings paint a diverse and complex picture of the Arc epigenetic landscape in cognitive aging and bolster a body of work, indicating that dysfunctional epigenetic regulation is associated with memory impairment in the aged brain.


Asunto(s)
Envejecimiento Cognitivo/fisiología , Proteínas del Citoesqueleto/genética , Aprendizaje por Laberinto/fisiología , Proteínas del Tejido Nervioso/genética , Memoria Espacial/fisiología , Animales , Proteínas del Citoesqueleto/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Long-Evans
15.
Cereb Cortex ; 30(8): 4297-4305, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32239141

RESUMEN

The CA3 and CA1 principal cell fields of the hippocampus are vulnerable to aging, and age-related dysfunction in CA3 may be an early seed event closely linked to individual differences in memory decline. However, whether the differential vulnerability of CA3 and CA1 is associated with broader disruption in network-level functional interactions in relation to age-related memory impairment, and more specifically, whether CA3 dysconnectivity contributes to the effects of aging via CA1 network connectivity, has been difficult to test. Here, using resting-state fMRI in a group of aged rats uncontaminated by neurodegenerative disease, aged rats displayed widespread reductions in functional connectivity of CA3 and CA1 fields. Age-related memory deficits were predicted by connectivity between left CA3 and hippocampal circuitry along with connectivity between left CA1 and infralimbic prefrontal cortex. Notably, the effects of CA3 connectivity on memory performance were mediated by CA1 connectivity with prefrontal cortex. We additionally found that spatial learning and memory were associated with functional connectivity changes lateralized to the left CA3 and CA1 divisions. These results provide novel evidence that network-level dysfunction involving interactions of CA3 with CA1 is an early marker of poor cognitive outcome in aging.


Asunto(s)
Envejecimiento/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Animales , Mapeo Encefálico , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Ratas , Ratas Long-Evans , Aprendizaje Espacial/fisiología
16.
Front Aging Neurosci ; 12: 49, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210784

RESUMEN

Normative aging is known to affect how decisions are made in risky situations. Although important individual variability exists, on average, aging is accompanied by greater risk aversion. Here the behavioral and neural mechanisms of greater risk aversion were examined in young and old rats trained on an instrumental probability discounting task. Consistent with the literature, old rats showed greater discounting of reward value when the probability of obtaining rewards dropped below 100%. Behaviorally, reward magnitude discrimination was the same between young and old rats, and yet these same rats exhibited reduced sensitivity to positive, but not negative, choice outcomes. The latter behavioral result was congruent with additional findings that the aged ventral tegmental neurons (including dopamine cells) were less responsive to rewards when compared to the same cell types recorded from young animals. In sum, it appears that reduced responses of dopamine neurons to rewards contribute to aging-related changes in risky decisions.

17.
Neurobiol Aging ; 87: 132-137, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31952867

RESUMEN

The glycoprotein reelin has been implicated in both memory-related synaptic plasticity and Alzheimer's disease pathogenesis. Aged rats with memory impairment display decreased reelin expression in layer II of the entorhinal cortex (EC) relative to memory-intact subjects, and here we tested whether this effect extends to the primate brain. Seven young adult (8-10 years) and 14 aged (27-38 years) rhesus monkeys (Macaca mulatta) were examined, including 7 old animals classified as impaired based on their scores from a delayed nonmatching-to-sample recognition memory test. Histological sections spanning the rostrocaudal extent of the intermediate and caudal divisions of EC were processed by immunohistochemistry and the total number of reelin-positive neurons in layer II was estimated using design-based stereological techniques. The main finding was that the number of reelin-expressing neurons in EC layer II is decreased selectively in aged monkeys with memory deficits relative to young adult and aged subjects with intact memory. The results add to evidence implicating EC-hippocampal integrity in neurocognitive aging, and they suggest that disrupted reelin signaling may be among the mechanisms that mediate the associated vulnerability of this circuitry in Alzheimer's disease.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Proteínas de la Matriz Extracelular/metabolismo , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Serina Endopeptidasas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Animales , Envejecimiento Cognitivo , Macaca mulatta , Trastornos de la Memoria/etiología , Ratas , Proteína Reelina , Transducción de Señal/genética , Transducción de Señal/fisiología
18.
Front Aging Neurosci ; 12: 607685, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551788

RESUMEN

The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.

19.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31848209

RESUMEN

Transcranial magnetic stimulation (TMS) is among a growing family of noninvasive brain stimulation techniques being developed to treat multiple neurocognitive disorders, including Alzheimer's disease (AD). Although small clinical trials in AD have reported positive effects on cognitive outcome measures, significant knowledge gaps remain, and little attention has been directed at examining the potential influence of TMS on AD pathogenesis. Our review briefly outlines some of the proposed neurobiological mechanisms of TMS benefits in AD, with particular emphasis on the modulatory effects on excitatory/inhibitory balance. On the basis of converging evidence from multiple fields, we caution that TMS therapeutic protocols established in young adults may have unexpected detrimental effects in older individuals or in the brain compromised by AD pathology. Our review surveys clinical studies of TMS in AD alongside basic research as a guide for moving this important area of work forward toward effective treatment development.


Asunto(s)
Enfermedad de Alzheimer , Estimulación Magnética Transcraneal , Anciano , Enfermedad de Alzheimer/terapia , Encéfalo/fisiología , Humanos
20.
Neurobiol Aging ; 83: 130-134, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31732016

RESUMEN

The structure and function of the brain change over the life span. Aged brains often accumulate pathologic lesions, such as amyloid plaques and tau tangles, which lead to diminished cognitive ability in some, but not all, individuals. The basis of this vulnerability and resilience is unclear. Age-related changes can alter neural firing patterns and ability to form new memories. Risk factors for cognitive decline include male sex and apolipoprotein E genotype. Physical activity seems to be protective against cognitive decline. Longitudinal studies have shown that, although the onset of amyloid pathology and associated cognitive decline can vary greatly, once it begins, the rate of deposition is similar among affected individuals. This session of the Cognitive Aging Summit III explored fixed and modifiable factors that can threaten cognitive function in aging adults and approaches to modulate at least some of these risks.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Envejecimiento Cognitivo/fisiología , Disfunción Cognitiva/patología , Envejecimiento/patología , Envejecimiento/fisiología , Enfermedad de Alzheimer/fisiopatología , Encéfalo/metabolismo , Cognición/fisiología , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Masculino , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...