Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39012815

RESUMEN

We broaden the clinical versatility of human nasal epithelial (HNE) cells. HNEs were isolated from 10 participants harboring CFTR variants: nine with rare variants (Q359R [n=2], G480S, R334W [n=5], and R560T) and one person harboring R117H;7T;TG10/5T;TG12. Cultures were differentiated at air-liquid interface. CFTR function was measured in Ussing chambers at three conditions - baseline, ivacaftor, and elexacaftor+tezacaftor+ivacaftor (ETI). Four participants initiated modulators. Q359R HNEs had 5.4% (%WT) baseline CFTR function and 25.5% with ivacaftor. With therapy, sweat [Cl-] decreased and symptoms resolved. G480S HNEs had 4.1% baseline and 32.1% CFTR function with ETI. Clinically, FEV1 increased and sweat [Cl-] decreased (119 to 46mmol/L) with ETI. In vitro cultures derived from five individuals harboring R334W showed a moderate increase in CFTR function with exposure to modulators. For one of these participants, ETI was begun in vivo; symptoms and FEV1 improved. c.1679G>C (R560T) HNEs had <4% baseline CFTR function and no modulator response. RNA analysis confirmed that c.1679G>C completely mis-splices. A symptomatic patient harboring R117H;7T;TG10/5T;TG12 exhibited reduced CFTR function (17.5%) in HNEs, facilitating mild CF diagnosis. HNEs responded to modulators (ivacaftor: 32.8%, ETI: 55.5%) and, since beginning therapy, lung function improved. While reaffirming HNE use for guiding therapeutic approaches, we inform predictions on modulator response (e.g. R334W) and closely assess variants affecting splicing (e.g. c.1679G>C). Notably, functional studies in HNEs harboring R117H;7T;TG10/5T;TG12 facilitated mild CF diagnosis, suggesting use for HNE functional studies as a clinical diagnostic test.

2.
J Cyst Fibros ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734509

RESUMEN

BACKGROUND: Cystic fibrosis (CF) is caused by deleterious variants in each CFTR gene. We investigated the utility of whole-gene CFTR sequencing when fewer than two pathogenic or likely pathogenic (P/LP) variants were detected by conventional testing (sequencing of exons and flanking introns) of CFTR. METHODS: Individuals with features of CF and a CF-diagnostic sweat chloride concentration with zero or one P/LP variants identified by conventional testing enrolled in the CF Mutation Analysis Program (MAP) underwent whole-gene CFTR sequencing. Replication was performed on individuals enrolled in the CF Genome Project (CFGP), followed by phenotype review and interrogation of other genes. RESULTS: Whole-gene sequencing identified a second P/LP variant in 20/43 MAP enrollees (47 %) and 10/22 CFGP enrollees (45 %) who had one P/LP variant after conventional testing. No P/LP variants were detected when conventional testing was negative (MAP: n = 43; CFGP: n = 13). Genome-wide analysis was unable to find an alternative etiology in CFGP participants with fewer than two P/LP CFTR variants and CF could not be confirmed in 91 % following phenotype re-review. CONCLUSIONS: Whole-gene CFTR analysis is beneficial in individuals with one previously-identified P/LP variant and a CF-diagnostic sweat chloride. Negative conventional CFTR testing indicates that the phenotype should be re-evaluated.

3.
Pediatrics ; 153(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38577740

RESUMEN

A multidisciplinary committee developed evidence-based guidelines for the management of cystic fibrosis transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen-positive, inconclusive diagnosis (CRMS/CFSPID). A total of 24 patient, intervention, comparison, and outcome questions were generated based on surveys sent to people with CRMS/CFSPID and clinicians caring for these individuals, previous recommendations, and expert committee input. Four a priori working groups (genetic testing, monitoring, treatment, and psychosocial/communication issues) were used to provide structure to the committee. A systematic review of the evidence was conducted, and found numerous case series and cohort studies, but no randomized clinical trials. A total of 30 recommendations were graded using the US Preventive Services Task Force methodology. Recommendations that received ≥80% consensus among the entire committee were approved. The resulting recommendations were of moderate to low certainty for the majority of the statements because of the low quality of the evidence. Highlights of the recommendations include thorough evaluation with genetic sequencing, deletion/duplication analysis if <2 disease-causing variants were noted in newborn screening; repeat sweat testing until at least age 8 but limiting further laboratory testing, including microbiology, radiology, and pulmonary function testing; minimal use of medications, which when suggested, should lead to shared decision-making with families; and providing communication with emphasis on social determinants of health and shared decision-making to minimize barriers which may affect processing and understanding of this complex designation. Future research will be needed regarding medication use, antibiotic therapy, and the use of chest imaging for monitoring the development of lung disease.


Asunto(s)
Fibrosis Quística , Medicina Basada en la Evidencia , Humanos , Fibrosis Quística/terapia , Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Pruebas Genéticas , Tamizaje Neonatal/métodos
4.
J Cyst Fibros ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38388235

RESUMEN

BACKGROUND: In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS: Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS: 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.

5.
J Physiol ; 602(2): 333-354, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186087

RESUMEN

Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 µM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.


Asunto(s)
Fibrosis Quística , Quinolonas , Cricetinae , Animales , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células CHO , Cricetulus , Aminoácidos , Activación del Canal Iónico , Aminofenoles/farmacología , Adenosina Trifosfato/metabolismo
6.
Mol Ther Nucleic Acids ; 33: 335-350, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37547293

RESUMEN

Canonical splice site variants affecting the 5' GT and 3' AG nucleotides of introns result in severe missplicing and account for about 10% of disease-causing genomic alterations. Treatment of such variants has proven challenging due to the unstable mRNA or protein isoforms that typically result from disruption of these sites. Here, we investigate CRISPR-Cas9-mediated adenine base editing for such variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We validate a CFTR expression minigene (EMG) system for testing base editing designs for two different targets. We then use the EMG system to test non-standard single-guide RNAs with either shortened or lengthened protospacers to correct the most common cystic fibrosis-causing variant in individuals of African descent (c.2988+1G>A). Varying the spacer region length allowed placement of the editing window in a more efficient context and enabled use of alternate protospacer adjacent motifs. Using these modifications, we restored clinically significant levels of CFTR function to human airway epithelial cells from two donors bearing the c.2988+1G>A variant.

8.
J Cyst Fibros ; 22(1): 17-30, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36916675

RESUMEN

Cystic fibrosis (CF) has entered the era of variant-specific therapy, tailored to the genetic variants in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators, the first variant-specific therapy available, have transformed the management of CF. The latest standards of care from the European CF Society (2018) did not include guidance on variant-specific therapy, as CFTR modulators were becoming established as a novel therapy. We have produced interim standards to guide healthcare professionals in the provision of variant-specific therapy for people with CF. Here we provide evidence-based guidance covering the spectrum of care, established using evidence from systematic reviews and expert opinion. Statements were reviewed by key stakeholders using Delphi methodology, with agreement (≥80%) achieved for all statements after one round of consultation. Issues around accessibility are discussed and there is clear consensus that all eligible people with CF should have access to variant-specific therapy.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Nivel de Atención , Transporte Iónico , Transducción de Señal , Mutación
9.
Am J Respir Crit Care Med ; 207(10): 1324-1333, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921087

RESUMEN

Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Estudio de Asociación del Genoma Completo/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Gravedad del Paciente , Pulmón , Proteínas Asociadas a Microtúbulos/genética
10.
Am J Hum Genet ; 109(10): 1894-1908, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206743

RESUMEN

Individuals with cystic fibrosis (CF) develop complications of the gastrointestinal tract influenced by genetic variants outside of CFTR. Cystic fibrosis-related diabetes (CFRD) is a distinct form of diabetes with a variable age of onset that occurs frequently in individuals with CF, while meconium ileus (MI) is a severe neonatal intestinal obstruction affecting ∼20% of newborns with CF. CFRD and MI are slightly correlated traits with previous evidence of overlap in their genetic architectures. To better understand the genetic commonality between CFRD and MI, we used whole-genome-sequencing data from the CF Genome Project to perform genome-wide association. These analyses revealed variants at 11 loci (6 not previously identified) that associated with MI and at 12 loci (5 not previously identified) that associated with CFRD. Of these, variants at SLC26A9, CEBPB, and PRSS1 associated with both traits; variants at SLC26A9 and CEBPB increased risk for both traits, while variants at PRSS1, the higher-risk alleles for CFRD, conferred lower risk for MI. Furthermore, common and rare variants within the SLC26A9 locus associated with MI only or CFRD only. As expected, different loci modify risk of CFRD and MI; however, a subset exhibit pleiotropic effects indicating etiologic and mechanistic overlap between these two otherwise distinct complications of CF.


Asunto(s)
Fibrosis Quística , Diabetes Mellitus , Enfermedades del Recién Nacido , Obstrucción Intestinal , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diabetes Mellitus/genética , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Obstrucción Intestinal/complicaciones , Obstrucción Intestinal/genética
11.
J Cyst Fibros ; 21(5): 856-860, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35527187

RESUMEN

In December 2020, the U.S. Food and Drug Administration (FDA) expanded the list of CFTR variants approved for treatment with CFTR modulators drugs from 39 to 183. Clinicians should be aware that individuals harboring certain variants approved for treatment may not respond to or benefit from this therapy. After review, the expert panel leading the CFTR2 project identified four categories of variants that may not result in a clinical response to modulator treatment: 15 variants assigned as non CF-causing; 45 variants of unknown significance; six variants known or suspected to cause mis-splicing as their primary defect rather than an amino acid substitution; and eight variants known to occur together in cis with another deleterious variant not expected to lead to CFTR protein (nonsense or frameshift). The potential risks and benefits of CFTR modulator therapy should be considered carefully for individuals harboring these variants.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mutación , Empalme del ARN
12.
Pediatr Pulmonol ; 57(7): 1782-1788, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451201

RESUMEN

BACKGROUND: Heterozygote carriers of potentially pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have increased asthma risk. However, the frequency and impact of CFTR variation among individuals with asthma is unknown. OBJECTIVE: To determine whether potentially pathogenic CFTR variants associate with disease severity and whether individuals with two potentially pathogenic variants exist in a severe asthma-enriched cohort. METHODS: We analyzed sequencing data spanning a 190.5Kb region of CFTR in participants from the Severe Asthma Research Program (SARP1-3). Potentially pathogenic, rare CFTR variants (frequency < 0.05) were classified as CF-causing or of varying clinical consequences (VVCC) (CFTR2. org). Regression-based models tested for association between CFTR genotypes (0-2 potentially pathogenic variants) and severity outcomes. RESULTS: Of 1401 participants, 9.5% (134) had one potentially pathogenic variant, occurring more frequently in non-Hispanic white (NHW, 10.1% [84 of 831]) compared to African American individuals (AA, 5.2% [22 of 426]). We found ≥2 potentially pathogenic CFTR variants in 1.4% (19); 0.5% (4) of NHW and 2.8% (12) of AA. Potentially pathogenic CFTR variant genotypes (≥1 or ≥2 variants) were not cumulatively associated with lung function or exacerbations. In NHW, we found three F508del compound heterozygotes with F508del and a VVCC (two 5 T; TG12[c.1210-11 T > G] and one Arg1070Trp) and a homozygote for the VVCC, 5 T; TG12. CONCLUSIONS: We found potentially pathogenic CFTR variants within a severe asthma-enriched cohort, including three compound heterozygote genotypes variably associated with CF in NHW individuals. These findings provide the rationale for CFTR sequencing and phenotyping of CF-related traits in individuals with severe asthma.


Asunto(s)
Asma , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística , Asma/genética , Fibrosis Quística/genética , Humanos , Mutación , Análisis de Secuencia de ADN
13.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35315358

RESUMEN

The chloride channel dysfunction caused by deleterious cystic fibrosis transmembrane conductance regulator (CFTR) variants generally correlates with severity of cystic fibrosis (CF). However, 3 adults bearing the common severe variant p.Phe508del (legacy: F508del) and a deletion variant in an ivacaftor binding region of CFTR (p.Phe312del; legacy: F312del) manifested only elevated sweat chloride concentration (sw[Cl-]; 87-105 mEq/L). A database review of 25 individuals with F312del and a CF-causing variant revealed elevated sw[Cl-] (75-123 mEq/L) and variable CF features. F312del occurs at a higher-than-expected frequency in the general population, confirming that individuals with F312del and a CF-causing variant do not consistently develop overt CF features. In primary nasal cells, CFTR bearing F312del and F508del generated substantial chloride transport (66.0% ± 4.5% of WT-CFTR) but did not respond to ivacaftor. Single-channel analysis demonstrated that F312del did not affect current flow through CFTR, minimally altered gating, and ablated the ivacaftor response. When expressed stably in CF bronchial epithelial (CFBE41o-) cells, F312del-CFTR demonstrated residual function (50.9% ± 3.3% WT-CFTR) and a subtle decrease in forskolin response compared with WT-CFTR. F312del provides an exception to the established correlation between CFTR chloride transport and CF phenotype and informs our molecular understanding of ivacaftor response.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Aminofenoles/farmacología , Aminofenoles/uso terapéutico , Cloruros/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Fenotipo , Quinolonas
14.
Mol Genet Genomic Med ; 10(6): e1926, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35348309

RESUMEN

BACKGROUND: Despite consolidated guidelines, the clinical diagnosis and prognosis of cystic fibrosis (CF) is still challenging mainly because of the extensive phenotypic heterogeneity and the high number of CFTR variants, including their combinations as complex alleles. RESULTS: We report a family with a complicated syndromic phenotype, which led to the suspicion not only of CF, but of a dominantly inherited skeletal dysplasia (SD). Whereas the molecular basis of the SD was not clarified, segregation analysis was central to make a correct molecular diagnosis of CF, as it allowed to identify three CFTR variants encompassing two known maternal mutations and a novel paternal microdeletion. CONCLUSION: This case well illustrates possible pitfalls in the clinical and molecular diagnosis of CF; presence of complex phenotypes deflecting clinicians from appropriate CF recognition, and/or identification of two mutations assumed to be in trans but with an unconfirmed status, which underline the importance of an in-depth molecular CFTR analysis.


Asunto(s)
Fibrosis Quística , Alelos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mutación , Fenotipo
15.
Pediatr Pulmonol ; 57(4): 894-902, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34964558

RESUMEN

INTRODUCTION: A risk associated with cystic fibrosis newborn screening (CFNBS) is parental misunderstanding of genetic information generated by the over 6600 positive screens reported annually in the United States. CFNBS algorithms incorporating DNA analysis can generate genetic information that requires clinical interpretation and has significance for the newborn, parents, and other relatives. Engagement between CF care centers and trained genetic counseling providers, such as licensed and/or certified genetic counselors (GCs), is variable and limited in providing information to CFNBS positive (CFNBS+) families. METHODS: Using a modified Delphi process, a workgroup of CFNBS experts developed recommendation statements for engagement of genetic counseling services in CF care centers where CFNBS + diagnostic evaluations are performed. Statements were assessed over three rounds of surveys, one face-to-face meeting, and through public feedback. RESULTS: Seventeen statements achieved >80% consensus (range: 82%-100%). The workgroup affirmed prior CFF policy statements recommending genetic counseling for parents of infants with CFNBS+. The remaining statements addressed infrastructure and logistics of genetic counseling services, including defining appropriate training for genetic counseling providers and counseling content, establishing a path to equal access to genetic counseling providers across CF care centers, and setting a standard for client-centered CFNBS genetic counseling that is respectful of diverse patient needs and autonomy. CONCLUSIONS: Implementation of client-centered genetic counseling for CFNBS+ families in CF care centers by providers with expertise in both CF and genetic counseling will require efforts to further define core concepts, enhance the education of providers, and develop opportunities for access via telemedicine.


Asunto(s)
Fibrosis Quística , Asesoramiento Genético , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Tamizaje Neonatal , Padres
16.
J Cyst Fibros ; 21(1): 40-44, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34393091

RESUMEN

Chronic Pseudomonas aeruginosa (Pa) infection is associated with increased morbidity and mortality in people with cystic fibrosis (CF). There is no gold standard definition of chronic Pa infection in CF. We compared chronic Pa definitions using encounter-based versus annualized data in the Early Pseudomonas Infection Control (EPIC) Observational study cohort, and subsequently compared annualized chronic Pa definitions across a range of U.S. cohorts spanning decades of CF care. We found that an annualized chronic Pa definition requiring at least 1 Pa+ culture in 3 of 4 consecutive years ("Green 3/4") resulted in chronic Pa metrics similar to established encounter-based modified Leeds criteria definitions, including a similar age at and proportion who fulfilled chronic Pa criteria, and a similar proportion with sustained Pa infection after meeting the chronic Pa definition. The Green 3/4 chronic Pa definition will be valuable for longitudinal analyses in cohorts with limited culture frequency.


Asunto(s)
Fibrosis Quística/microbiología , Infecciones por Pseudomonas/diagnóstico , Terminología como Asunto , Niño , Preescolar , Enfermedad Crónica , Estudios de Cohortes , Humanos , Lactante , Pseudomonas aeruginosa , Sistema de Registros , Factores de Tiempo
17.
J Cyst Fibros ; 21(3): 463-470, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34782259

RESUMEN

BACKGROUND: Cystic fibrosis (CF) is a recessive condition caused by variants in each CF transmembrane conductance regulator (CFTR) allele. Clinically affected individuals without two identified causal variants typically have no further interrogation of CFTR beyond examination of coding regions, but the development of variant-specific CFTR-targeted treatments necessitates complete understanding of CFTR genotype. METHODS: Whole genome sequences were analyzed on 5,058 individuals with CF. We focused on the full CFTR gene sequence and identified disease-causing variants in three phases: screening for known and structural variants; discovery of novel loss-of-function variants; and investigation of remaining variants. RESULTS: All variants identified in the first two phases and coding region variants found in the third phase were interpreted according to CFTR2 or ACMG criteria (n = 371; 16 [4.3%] previously unreported). Full gene sequencing enabled delineation of 18 structural variants (large insertions or deletions), of which two were novel. Additional CFTR variants of uncertain effect were found in 76 F508del homozygotes and in 21 individuals with other combinations of CF-causing variants. Both causative variants were identified in 98.1% (n = 4,960) of subjects, an increase of 2.3 percentage points from the 95.8% (n = 4,847) who had a registry- or chart-reported disease-causing CFTR genotype. Of the remaining 98 individuals, 78 carried one variant that has been associated with CF (CF-causing [n = 70] or resulting in varying clinical consequences n = 8]). CONCLUSIONS: Complete CFTR gene sequencing in 5,058 individuals with CF identified at least one DNA variant in 99.6% of the cohort that is targetable by current molecular or emerging gene-based therapeutic technologies.


Asunto(s)
Fibrosis Quística , Alelos , Estudios de Cohortes , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Mutación
18.
Genet Med ; 24(1): 87-99, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906463

RESUMEN

PURPOSE: The growing size of public variant repositories prompted us to test the accuracy of pathogenicity prediction of DNA variants using population data alone. METHODS: Under the a priori assumption that the ratio of the prevalence of variants in healthy population vs that in affected populations form 2 distinct distributions (pathogenic and benign), we used a Bayesian method to assign probability to a variant belonging to either distribution. RESULTS: The approach, termed Bayesian prevalence ratio (BayPR), accurately parsed 300 of 313 expertly curated CFTR variants: 284 of 296 pathogenic/likely pathogenic variants in 1 distribution and 16 of 17 benign/likely benign variants in another. BayPR produced an area under the receiver operating characteristic curve of 0.99 for 103 functionally confirmed missense CFTR variants, which is equal to or exceeds 10 commonly used algorithms (area under the receiver operating characteristic curve range = 0.54-0.99). Application of BayPR to expertly curated variants in 8 genes associated with 7 Mendelian conditions led to the assignment of a disease-causing probability of ≥80% to 1350 of 1374 (98.3%) pathogenic/likely pathogenic variants and of ≤20% to 22 of 23 (95.7%) benign/likely benign variants. CONCLUSION: Irrespective of the variant type or functional effect, the BayPR approach provides probabilities of pathogenicity for DNA variants responsible for Mendelian disorders using only the variant counts in affected and unaffected population samples.


Asunto(s)
Algoritmos , Mutación Missense , Teorema de Bayes , Humanos , Curva ROC
19.
PLoS Genet ; 16(10): e1009100, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33085659

RESUMEN

Elucidating the functional consequence of molecular defects underlying genetic diseases enables appropriate design of therapeutic options. Treatment of cystic fibrosis (CF) is an exemplar of this paradigm as the development of CFTR modulator therapies has allowed for targeted and effective treatment of individuals harboring specific genetic variants. However, the mechanism of these drugs limits effectiveness to particular classes of variants that allow production of CFTR protein. Thus, assessment of the molecular mechanism of individual variants is imperative for proper assignment of these precision therapies. This is particularly important when considering variants that affect pre-mRNA splicing, thus limiting success of the existing protein-targeted therapies. Variants affecting splicing can occur throughout exons and introns and the complexity of the process of splicing lends itself to a variety of outcomes, both at the RNA and protein levels, further complicating assessment of disease liability and modulator response. To investigate the scope of this challenge, we evaluated splicing and downstream effects of 52 naturally occurring CFTR variants (exonic = 15, intronic = 37). Expression of constructs containing select CFTR intronic sequences and complete CFTR exonic sequences in cell line models allowed for assessment of RNA and protein-level effects on an allele by allele basis. Characterization of primary nasal epithelial cells obtained from individuals harboring splice variants corroborated in vitro data. Notably, we identified exonic variants that result in complete missplicing and thus a lack of modulator response (e.g. c.2908G>A, c.523A>G), as well as intronic variants that respond to modulators due to the presence of residual normally spliced transcript (e.g. c.4242+2T>C, c.3717+40A>G). Overall, our data reveals diverse molecular outcomes amongst both exonic and intronic variants emphasizing the need to delineate RNA, protein, and functional effects of each variant in order to accurately assign precision therapies.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Fibrosis Quística/terapia , Empalme del ARN/genética , Empalme Alternativo/genética , Sustitución de Aminoácidos/genética , Cloruros/metabolismo , Fibrosis Quística/patología , Electromiografía , Exones/genética , Variación Genética/genética , Células HEK293 , Humanos , Intrones/genética , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Nucleótidos/genética , Medicina de Precisión/métodos , Cultivo Primario de Células , ARN Mensajero/genética
20.
Int Forum Allergy Rhinol ; 10(6): 748-754, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32282124

RESUMEN

BACKGROUND: Chronic rhinosinusitis symptomatology begins in early childhood individuals with cystic fibrosis (CF). Cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to sinus development and disease. Genetic variants of the bitter taste receptor TAS2R38 have been suggested to contribute to sinus disease severity in individuals without CF. Our objective was to explore whether functional TAS2R38 haplotypes and CFTR function are associated with sinus disease or the need for sinus surgery in individuals with CF. METHODS: We conducted a retrospective study using prospectively collected data from the CF Twin-Sibling Study. The function of CFTR was assessed via chloride conductance. Genotyping of the TAS2R38 gene identified patients who were homozygous for the functional haplotype, heterozygous, or homozygous for nonfunctional haplotypes. Clustered multivariate logistic regression was performed, controlling for sex and family relationship. RESULTS: A total of 1291 patients were evaluated. Patients with ≤1% CFTR function were 1.56 times more likely to require sinus surgery than those with >1% CFTR function (p = 0.049). CFTR function did not correlate significantly with the presence of sinus disease (p = 0.30). In addition, there were no statistically significant differences in diagnosis of sinus disease or need for sinus surgery between patients with functional and nonfunctional TAS2R38 haplotypes. CONCLUSION: CFTR function correlates with need for sinus surgery, whereas TAS2R38 function does not appear to contribute to sinus disease or the need for sinus surgery in patients with CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística , Senos Paranasales/cirugía , Receptores Acoplados a Proteínas G/genética , Sinusitis , Adolescente , Adulto , Niño , Preescolar , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/cirugía , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Haplotipos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Procedimientos Quírurgicos Nasales , Estudios Retrospectivos , Sinusitis/genética , Sinusitis/metabolismo , Sinusitis/cirugía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...